1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Furkat [3]
3 years ago
9

The force on an object is F⃗ =−17j⃗ . For the vector v⃗ =2i⃗ +3j⃗ , find: (a) The component of F⃗ parallel to v⃗

Physics
1 answer:
Igoryamba3 years ago
8 0

Answer:

(a) \vec F_{\parallel} = -\frac{102}{13}\,i-\frac{103}{13}\,j , (b) \vec F_{\perp} = \frac{102}{13}\,i -\frac{68}{13}\,j, (c) W = -51

Explanation:

The statement is incomplete:

The force on an object is \vec F = -17\,j. For the vector \vec v = 2\,i +3\,j. Find: (a) The component of \vec F parallel to \vec v, (b) The component of \vec F perpendicular to \vec v, and (c) The work W, done by force \vec F through displacement \vec v.

(a) The component of \vec F parallel to \vec v is determined by the following expression:

\vec F_{\parallel} = (\vec F \bullet \hat {v} )\cdot \hat{v}

Where \hat{v} is the unit vector of \vec v, which is determined by the following expression:

\hat{v} = \frac{\vec v}{\|\vec v \|}

Where \|\vec v\| is the norm of \vec v, whose value can be found by Pythagorean Theorem.

Then, if \vec F = -17\,j and \vec v = 2\,i +3\,j, then:

\|\vec v\| =\sqrt{2^{2}+3^{3}}

\|\vec v\|=\sqrt{13}

\hat{v} = \frac{1}{\sqrt{13}} \cdot(2\,i + 3\,j)

\hat{v} = \frac{2}{\sqrt{13}}\,i+ \frac{3}{\sqrt{13}}\,j

\vec F \bullet \hat{v} = (0)\cdot \left(\frac{2}{\sqrt{13}} \right)+(-17)\cdot \left(\frac{3}{\sqrt{13}} \right)

\vec F \bullet \hat{v} = -\frac{51}{\sqrt{13}}

\vec F_{\parallel} = \left(-\frac{51}{\sqrt{13}} \right)\cdot \left(\frac{2}{\sqrt{13}}\,i+\frac{3}{\sqrt{13}}\,j  \right)

\vec F_{\parallel} = -\frac{102}{13}\,i-\frac{153}{13}\,j

(b) Parallel and perpendicular components are orthogonal to each other and the perpendicular component can be found by using the following vectorial subtraction:

\vec F_{\perp} = \vec F - \vec F_{\parallel}

Given that \vec F = -17\,j and \vec F_{\parallel} = -\frac{102}{13}\,i-\frac{153}{13}\,j, the component of \vec F perpendicular to \vec v is:

\vec F_{\perp} = -17\,j -\left(-\frac{102}{13}\,i-\frac{153}{13}\,j  \right)

\vec F_{\perp} = \frac{102}{13}\,i + \left(\frac{153}{13}-17 \right)\,j

\vec F_{\perp} = \frac{102}{13}\,i -\frac{68}{13}\,j

(c) The work done by  \vec F through displacement \vec v is:

W = \vec F \bullet \vec v

W = (0)\cdot (2)+(-17)\cdot (3)

W = -51

You might be interested in
Students hypothesized that by running an electric current through the wire of the apparatus shown here, they could cause a non-m
astra-53 [7]
The answer is d i think
5 0
3 years ago
Read 2 more answers
Consider a cyclotron in which a beam of particles of positive charge q and mass m is moving along a circular path restricted by
Ulleksa [173]

A) v=\sqrt{\frac{2qV}{m}}

B) r=\frac{mv}{qB}

C) T=\frac{2\pi m}{qB}

D) \omega=\frac{qB}{m}

E) r=\frac{\sqrt{2mK}}{qB}

Explanation:

A)

When the particle is accelerated by a potential difference V, the change (decrease) in electric potential energy of the particle is given by:

\Delta U = qV

where

q is the charge of the particle (positive)

On the other hand, the change (increase) in the kinetic energy of the particle is (assuming it starts from rest):

\Delta K=\frac{1}{2}mv^2

where

m is the mass of the particle

v is its final speed

According to the law of conservation of energy, the change (decrease) in electric potential energy is equal to the increase in kinetic energy, so:

qV=\frac{1}{2}mv^2

And solving for v, we find the speed v at which the particle enters the cyclotron:

v=\sqrt{\frac{2qV}{m}}

B)

When the particle enters the region of magnetic field in the cyclotron, the magnetic force acting on the particle (acting perpendicular to the motion of the particle) is

F=qvB

where B is the strength of the magnetic field.

This force acts as centripetal force, so we can write:

F=m\frac{v^2}{r}

where r is the radius of the orbit.

Since the two forces are equal, we can equate them:

qvB=m\frac{v^2}{r}

And solving for r, we find the radius of the orbit:

r=\frac{mv}{qB} (1)

C)

The period of revolution of a particle in circular motion is the time taken by the particle to complete one revolution.

It can be calculated as the ratio between the length of the circumference (2\pi r) and the velocity of the particle (v):

T=\frac{2\pi r}{v} (2)

From eq.(1), we can rewrite the velocity of the particle as

v=\frac{qBr}{m}

Substituting into(2), we can rewrite the period of revolution of the particle as:

T=\frac{2\pi r}{(\frac{qBr}{m})}=\frac{2\pi m}{qB}

And we see that this period is indepedent on the velocity.

D)

The angular frequency of a particle in circular motion is related to the period by the formula

\omega=\frac{2\pi}{T} (3)

where T is the period.

The period has been found in part C:

T=\frac{2\pi m}{qB}

Therefore, substituting into (3), we find an expression for the angular frequency of motion:

\omega=\frac{2\pi}{(\frac{2\pi m}{qB})}=\frac{qB}{m}

And we see that also the angular frequency does not depend on the velocity.

E)

For this part, we use again the relationship found in part B:

v=\frac{qBr}{m}

which can be rewritten as

r=\frac{mv}{qB} (4)

The kinetic energy of the particle is written as

K=\frac{1}{2}mv^2

So, from this we can find another expression for the velocity:

v=\sqrt{\frac{2K}{m}}

And substitutin into (4), we find:

r=\frac{\sqrt{2mK}}{qB}

So, this is the radius of the cyclotron that we must have in order to accelerate the particles at a kinetic energy of K.

Note that for a cyclotron, the acceleration of the particles is achevied in the gap between the dees, where an electric field is applied (in fact, the magnetic field does zero work on the particle, so it does not provide acceleration).

6 0
4 years ago
Transduction of lower frequency sound waves occurs at the __________ of the cochlea.
kiruha [24]
I got inner ear for my answer if wrong sorry
4 0
3 years ago
Read 2 more answers
Acceleration due to gravity is also called
Artemon [7]
Free fall acceleration should be it
4 0
3 years ago
The disk that BTK sent to the television station contained just one valid file. What was the name of the file?
icang [17]

Answer:

The name of the file is Floppy.

Explanation:

Given that,

The disk that BTK sent to the television station contained just one valid file.

We need to find the name of the file

According to given data,

The disk that BTK sent to the television station contained just one valid file.

This file is called floppy.

Floppy :

The floppy disk is storage disk. It is made of thin and flexible disk of magnetic storage, It shape of square.

Floppy disk are read  and written to by floppy drive.

Hence, The name of the file is Floppy.

3 0
3 years ago
Other questions:
  • The attractive electrostatic force between the point charges +8.46 ✕ 10-6 and q has a magnitude of 0.967 n when the separation b
    5·1 answer
  • Select all of the answers that apply.
    5·2 answers
  • A 57 kg woman is on an elevator accelerating upward at "1.25" meters per second squared. what is the normal force acting on her?
    6·1 answer
  • Charges q and Q are placed on the x axis at x = 0 and x = 2.0m, respectively. If q= -40 pC and Q =+30 pC, determine the net flux
    7·2 answers
  • A uniform disk with mass 35.2 kg and radius 0.200 m is pivoted at its center about a horizontal, frictionless axle that is stati
    6·1 answer
  • Two uncharged metal spheres, spaced 25.0 cm apart, have a capacitance of 26.0 pF. How much work would it take to move 12.0 nC of
    7·1 answer
  • You skip north for 12 minutes to your best friend's house that is 1.5 kilometers away. What is your average velocity?
    15·1 answer
  • 50 POINTS!! BRAINLEST
    13·2 answers
  • Which option tells the forces that influence the movement of earths plates
    14·1 answer
  • A girl, standing on a bridge, throws a stone vertically downward with an initial velocity of 12.0 m/s, into the river below. if
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!