Answer:
D. 2^(3/2)
Explanation:
Given that
T² = A³
Let the mean distance between the sun and planet Y be x
Therefore,
T(Y)² = x³
T(Y) = x^(3/2)
Let the mean distance between the sun and planet X be x/2
Therefore,
T(Y)² = (x/2)³
T(Y) = (x/2)^(3/2)
The factor of increase from planet X to planet Y is:
T(Y) / T(X) = x^(3/2) / (x/2)^(3/2)
T(Y) / T(X) = (2)^(3/2)
Answer:
fact one
Explanation:
fact two is going slower and a longer distance than fact one so fact one will get there first.
hope this helps
Explanation:
m = mass of burrito thrown by the student = 0.5 kg
a = acceleration of the burrito thrown by the student = 3 m/s²
F = force applied by the student on the burrito = ?
According to newton's second law , the net force on an object is the product of its mass and acceleration. it is given as
F = ma
inserting the values
F = (0.5) (3)
F = 1.5 N
hence the net force on the burrito comes out to be 1.5 N
Explanation:
Given:
v₀ = 0 m/s
a = 9.8 m/s²
t = 4.7 s
Find: Δy
Δy = v₀ t + ½ at²
Δy = (0 m/s) (4.7 s) + ½ (9.8 m/s²) (4.7 s)²
Δy ≈ 110 m