answer is :D it would be a great answer
To solve this problem we will apply the concepts related to the conservation of momentum. That is, the final momentum must be the same final momentum. And in each state, the momentum will be the sum of the product between the mass and the velocity of each object, then


Here,
= Mass of each object
= Initial velocity of each object
= Final velocity of each object
When they position the final velocities of the bodies it is the same and the car is stationary then,

Rearranging to find the final velocity



The expression for the impulse received by the first car is


Replacing,


The negative sign show the opposite direction.
Frost will disturb the smooth flow of air over the wing, unpleasantly
distressing its lifting competence. In other words, this spoils the even flow
of air over the wings, by this means decreasing lifting capability. Also, frost
may avoid the airplane from becoming flying at normal departure speed.
The net speed due west is = distance traveled in west / time taken = 120/0.5 = 240 km/h.
so airspeed due west is = net speed - speed of plane = 240-220= 20 km/h.
airspeed due south is = distance traveled in west / time taken= 20/0.5= 40 km/h.
the magnitude of the wind velocity = √[(airspeed due south )² + (airspeed due west)²] = √ ( 40^2 + 20^2 ) = 44.72 km/h
the angle of airspeed south of west is tan⁻¹ ( airspeed due south / airspeed due west )= tan⁻¹(40/20)=63.43 degrees.
if wind velocity is 40 km/h due south, her velocity should have 20 km/h component in north.
so component west = sqrt ( 220^2 - 40^2 ) = 216.33 km/h.
the angle north of west is arctan( 40/216.33 ) = 10.47 degrees.
Answer:
yes
Explanation:
masses attract each other
with a teeny-tiny force