The magnitude of the charge on the balloon is 1.6 x 10⁻¹² C.
<h3>
What is the magnitude of the charge on the ball?</h3>
The magnitude of the charge on the ball is calculated by determining the total charge equivalent to the given number of electrons.
The charge of one electron = 1.6 x 10⁻¹⁹ Coulombs
Now, we are going to estimated the total charge of 1 x 10⁷ electrons.
1 electron = 1.6 x 10⁻¹⁹ C
1 x 10⁷ electrons = ?
= (1 x 10⁷ electrons x 1.6 x 10⁻¹⁹ C) / (1 electron)
= 1.6 x 10⁻¹² C
Thus, the total charge of 1 x 10⁷ electrons is obtained by multiplying the magnitude of charge of one electron to the entire given electrons.
Learn more about charge of electron here: brainly.com/question/9317875
#SPJ1
Answer:
Because weight W = M g, the ratio of weights equals the ratio of masses.
(M_m g)/ (M_w g) = [ (p^2 Man )/ (2 K_man)] / [ (p^2 Woman )/ (2 K_woman)
but p's are equal, so
K_m/K_m = (M_w g)/(M_m g) = W_woman / W_man = 450/680 = 0.662Explanation:
Personally, I agree with your answer, namely that the likely-intended event happening here is one of acceleration. Having said that, I also want to add: it pains me to see this type of wording because, clearly, it is vague and only invites confusion of the type you are talking about.
Good luck!
H3 in reaction: NH3 + H2O→NH4 + OH-
<span>The NH3 has gained an H - it is a base
true</span>
The calorie was originally defined as the amount of heat required at a pressure of 1 standard atmosphere to raise the temperature of 1 gram of water 1° Celsius. ... Since 1925 this calorie has been defined in terms of the joule, the definition since 1948 being that one calorie is equal to approximately 4.2 joules.