A) According to the nebular theory, the Solar System formed from a huge gaseous nebula which at a certain point was perturbated. Atoms and molecules started colliding, forming planetesimals (a sort of big rocks). The planetesimals were attracted to each other by gravity, forming bigger warm almost spherical objects called protoplanets, which at the end cooled down forming planets.
Therefore the correct answer is "all of the above".
b) The planets closer to the Sun were (and still are) subject to higher temperatures, due to their close distance to the Sun. In these conditions, rocky materials undergo condensation, while iced gaseous materials undergo vaporization. In the outer parts of the Solar System temperatures are too low to allow these transformations.
The correct answer is again "all of the above".
Answer:
yes
Explanation:
using law of HC(heat capacity), which is
- heat loss=heat gain
- energy H=MCQ
Where M is mass of substance,C is specific heat capacity, and Q is temperature change
In case of two substance
- the H = Mc*Cc*Q+Mw*Cw*Q(provided the initial and final temperature are given)
Answer:
The magnitude of the gravitational force is 4.53 * 10 ^-7 N
Explanation:
Given that the magnitude of the gravitational force is F = GMm/r²
mass M = 850 kg
mass m = 2.0 kg
distance d = 1.0 m , r = 0.5 m
F = GMm/r²
Gravitational Constant G = 6.67 × 10^-11 Newtons kg-2 m2.
F = (6.67 × 10^-11 * 850 * 2)/0.5²
F = 0.00000045356 N
F = 4.53 * 10 ^-7 N
Answer:
The longest wavelength of light is 209 nm.
Explanation:
Given that,
Spring constant = 74 N/m
Mass of electron 
Speed of light 
We need to calculate the frequency
Using formula of frequency

Where, k= spring constant
m = mass of the particle
Put the value into the formula


We need to calculate the longest wavelength that the electron can absorb

Where, c = speed of light
f = frequency
Put the value into the formula



Hence, The longest wavelength of light is 209 nm.