Answer:
Part a)

Part b)

Explanation:
Part a)
As we know that car is moving with uniform speed
so here net tangential force must be zero while in radial direction the car is moving in circle so here we have

so we have

R = 285 m

now we have


Part b)
As we know that Police Man is experiencing the force only towards the center of the circle
So the net force is horizontal towards the center of the circle and hence it angle with vertical will be

Answer:
Option e. Blue/Violet
Explanation:
We know that when white light passes through a diffraction grating it spits into a band of seven colors or spectrum which includes the color in the order VIBGYOR that stands for Violet, Indigo, Blue, Green, Yellow, Orange and Red respectively.
Red light has the longest wavelength and is least scattered whereas Violet light with the shortest wavelength is the one to get most scattered and as we move far from bright spot at the center, there is an increase in the wavelength of light, thus the color that corresponds to the closest one is Violet with the shortest wavelength in the band.
The equation for range is:
R = v₀²sin(2θ)/g
To find the maximum R, differentiate the equation and equate to zero. The solution is as follows:
dR/dθ = (v₀²/g)(sin 2θ)
dR/dθ = (v₀²/g)(cos 2θ)(2) = 0
cos 2θ = 0
2θ = cos⁻¹ 0 = 90
θ = 90/2
<em>θ = 45°</em>
Answer: (A) 3.0=A
Explanation: In order to explain this problem we have to use the OHM law, given by: V=R*I
Besides, we have to consider the resitance equivalent for a parallel connection. This is given by:
1/Re=1/R1+1/R2
If we connect the same resistance, the equivalent resistance is R/2.
Initlally the current is 1.5 A when one resistance is connected to the batttery. When a second resistance with the same value is connected in parallel to the battery, we have V=Re*Ifinal= (R/2)*Ifinal
also we know that V=R*Iinitial so Iinitial=V/R
then Ifinal= 2*V/R=2*Iinitial