Answer:
2.74 x 1023 molecules of CO2.
Explanation:
There are 2.74 x 1023 molecules of CO2.
(a) Iron (iii) sulphate:
From the periodic table:
mass of iron = 55.845 grams
mass of sulphur = 32.065 grams
mass of oxygen = 16 grams
Iron (iii) sulphate has the formula: Fe2(SO4)3
molar mass = 2(55.845) + 3(32.065) + 3(4)(16) = 399.885 grams
(b) Sodium hydroxide:
From the periodic table:
mass of sodium = 22.989 grams
mass of oxygen = 16 grams
mass of hydrogen = 1 gram
Sodium hydroxide has the formula: NaOH
molar mass = 22.989 + 16 + 1 = 39.989 grams
(c) Barium carbonate
From the periodic table:
mass of barium = 137.327 grams
mass of carbon = 12 grams
mass of oxygen = 16 grams
Barium carbonate has the formula: BaCO3
molar mass = 137.327 + 12 + 3(16) = 197.327 grams
(d) ammonium nitrate:
From the periodic table:
mass of nitrogen = 14 grams
mass of hydrogen = 1 gram
mass of oxygen = 16 grams
Ammonium nitrate has the formula: NH4NO3
molar mass = 14 + 4(1) + 14 + 3(16) = 80 grams
(e) Lead (iv) oxide
From the periodic table:
mass of lead = 207.2 grams
mass of oxygen = 16 grams
Lead (iv) oxide has the formula: PbO2
molar mass = 207.2 + 2(16) = 239.2 grams
From the above calculations, we can see that:
Iron (iii) sulphate has the greatest mass.
Answer:
photo is blurred plese send photo clearly
The correct answer is - 1 cm/yr.
Alongside the western coast of South America, the Nazca plate and the South American plate are in a collision for several million years now, with the Nazca plate being the one that is subducting in this convergent plate boundary.
If the Nazca plate's focus has moved 1,000 km in the last 10 million years, than in order to get to the annual movement of the subduction we need to convert the km into cm first:
1 km = 10,000 cm
1,000 x 10,000 = 10,000,000
1,000 km = 10,000,000 cm
Than we need to divide the number of cm with the number of years:
10,000,000 / 10,000,000 = 1
And we get the result of 1 cm/yr.