They are called isotopes.
Example of isotopes are Hydrogen and deuterium.
Hydrogen is 1 proton and 0 neutrons.
Deuterium is 1 proton and 1 neutron
Answer:
∆H° rxn = - 93 kJ
Explanation:
Recall that a change in standard in enthalpy, ∆H°, can be calculated from the inventory of the energies, H, of the bonds broken minus bonds formed (H according to Hess Law.
We need to find in an appropiate reference table the bond energies for all the species in the reactions and then compute the result.
N₂ (g) + 3H₂ (g) ⇒ 2NH₃ (g)
1 N≡N = 1(945 kJ/mol) 3 H-H = 3 (432 kJ/mol) 6 N-H = 6 ( 389 kJ/mol)
∆H° rxn = ∑ H bonds broken - ∑ H bonds formed
∆H° rxn = [ 1(945 kJ) + 3 (432 kJ) ] - [ 6 (389 k J]
∆H° rxn = 2,241 kJ -2334 kJ = -93 kJ
be careful when reading values from the reference table since you will find listed N-N bond energy (single bond), but we have instead a triple bond, N≡N, we have to use this one .
The atomic mass or relative isotopic mass refers to the mass of a single particle, and therefore is tied to a certain specific isotope of an element. The dimensionless standard atomic weight instead refers to the AVERAGE of atomic mass values of a typical naturally-occurring mixture of isotopes for a sample of an element.
You can count it by yourself using formula
m = ({first isotopic distribution%}× {first atomic.mass})+ ({second isotopic distribution%}× {second atomic.mass}) / {100}
Answer: A hydrogen bonding is interaction between lone pair and hydrogen atom. An Ion-Dipole interaction is the interaction between an ion formed and a dipole. Dipole forms because of the electronegativity difference between two atom participating in the bond formation, and an ion is formed when an atom gains or lose electron. This ion-dipole interaction is strongest interaction.
Therefore, The right choice is (B)
Higher. Because this type of heat transfer is conduction, meaning that heat always transfers to cooler objects.