C, that cells cannot be created nor destroyed.
Cells are produce by other cells. Cells can not be man-made nor destroyed.
Answer:
Q = 1455.12 Joules.
Explanation:
Given the following data;
Mass = 300 grams
Initial temperature = 22.3
Final temperature = 59.9°C
Specific heat capacity = 0.129 J/gºC.
To find the quantity of energy;
Where,
Q represents the heat capacity.
m represents the mass of an object.
c represents the specific heat capacity of water.
dt represents the change in temperature.
dt represents the change in temperature.
dt = T2 - T1
dt = 59.9 - 22.3
dt = 37.6°C
Substituting the values into the equation, we have;
Q = 1455.12 Joules.
The volume that will occupy at STP is calculated as follows
by use of ideal gas equation
that is PV=nRT where n is number of moles calculate number of moles
n= PV/RT
p=0.75 atm
V=6.0 L
R = 0.0821 L.atm/k.mol
T= 35 +273= 308k
n=?
n= (o.75 atm x 6.0 L)/( 0.0821 L.atm/k.mol x 308 k)= 0.178 moles
Agt STP 1 mole= 22.4 L what obout 0.178 moles
= 22.4 x0.178moles/ 1moles =3.98 L( answer C)
the amount of heat produced from the combustion of 24.3 g benzene (c6h6) is ΔH = -976.5 kJ
There are two moles of benzene involved in the process (C6H6). Since the heat of this reaction is -6278 kJ, the burning of 2 moles of benzene will result in a heat loss of 6278 kJ. This reaction is exothermic.
Enthalpy, or the value of H, is a unit of measurement for heat that relies on the amount of matter present (number of moles).
Thus, 24.3 g of benzene contains:
n = mass/molar mass, where n = 24.3/78.11, and n = 0.311 moles.
2 moles = 6278 kJ
0.311 moles =x
By the straightforward direct three rule:
2x = -1953.08 x = -976.5 kJ
Learn more about combustion here-
brainly.com/question/15117038
#SPJ4