Answer:
DONDODA
Step-by-step explanation:
9514 1404 393
Answer:
(x +3)² +(y -4)² = 145
Step-by-step explanation:
The center of the circle is the midpoint of the given segment PQ. If we call that point A, then ...
A = (P +Q)/2
A = ((-12, -4) +(6, 12))/2 = (-12+6, -4+12)/2 = (-6, 8)/2
A = (-3, 4)
The equation of the circle for some radius r is ...
(x -(-3))² +(y -4)² = r² . . . . . . where (-3, 4) is the center of the circle
The value of r² can be found by substituting either of the points on the circle. If we use Q, then we have ...
(6 +3)² +(12 -4)² = r² = 9² +8²
r² = 81 +64 = 145
Then the equation of the circle is ...
(x +3)² +(y -4)² = 145
Answer:
<h2>y = 6x + 2</h2>
Step-by-step explanation:
The slope-intercept form of an equation of a line:

<em>m</em><em> - slope</em>
<em>b</em><em> - y-intercept</em>
<em />
We have the slope <em>m = 6</em>, and the y-intercept <em>b = 2</em>.
Substitute:

Given: line segment AB // to line segment CD, ∠B ≅∠D and line segment BF ≅ to line segment ED. Prove: Δ ABF ≅ Δ CED.
Follow the matching numbers on the statement versus reason chart.
Statement:
1. line segment AB // to line segment CD.
2. ∠B ≅∠D
3. line segment BF ≅ to line segment ED.
4. ∠A ≅∠C
5. Δ ABF ≅ Δ CED
Reason:
1. Given
2. Given
3. Given
4. Alternate interior angles are congruent.
5. Corresponding parts of congruent triangles are congruent.
Answer:
The 98% confidence interval for the mean purchases of all customers is ($37.40, $61.74).
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so 
Now, find M as such

In which
is the standard deviation of the population and n is the size of the sample.

The lower end of the interval is the mean subtracted by M. So it is 49.57 - 12.17 = $37.40.
The upper end of the interval is the mean added to M. So it is 49.57 + 12.17 = $61.74.
The 98% confidence interval for the mean purchases of all customers is ($37.40, $61.74).