Answer:
Saturation.
Explanation:
Hello,
In this case, the statement is accounting for the saturation vapor pressure as it is the pressure of a vapor which is in equilibrium with its liquid, in other words it is the maximum exerted pressure possible by the vapor at a given temperature or just the maximum amount of the vapor, so there is neither no more vapor that could condense nor more liquid that could boil.
Best regards.
Answer: I would say its either exit door or the last one.
Explanation: Hope this helps plz mark brainliest.
<u>Answer:</u>
<u>For 1:</u> Neutralization reaction
<u>For 2: </u>Zinc is more reactive than lead and less reactive than calcium.
<u>Explanation:</u>
When a base reacts with an acid to form a salt and water molecule, it is known as a neutralization reaction. The general equation follows:

The chemical equation for the reaction of calcium hydroxide and nitric acid follows:

A single displacement reaction is defined as the reaction in which a more reactive metal displaces a less reactive metal from its salt solution. The general chemical equation follows:

where,
Metal A is more reactive than metal B
The reactivity of metals is judged by the reactivity series where a metal lying above in the series is more reactive than the metal lying below it.
From the reactivity series below,
Zinc lies above in the series than lead thus is more reactive and will easily replace lead from its aqueous solution.
While zinc lies below in the series than calcium thus is less reactive and will not easily replace calcium from its aqueous solution.


The pressure of gas will increase because gaseous state is the final state and even if the heat added is evaporating some more gas is still added. It also depends on the temperature of heat added, if the temperature doesn't change the it's most likely for the pressure to be stable...
Hope it helps
Answer:
The standard reaction enthalpy for the given reaction is 235.15 kJ/mol.
Explanation:
..[1]
..[2]
..[3]
..[4]
Using Hess's law:
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
2 × [4] = [2]- (3 ) × [1] - (2) × [3]




The standard reaction enthalpy for the given reaction is 235.15 kJ/mol.