Answer:
ΔU = −55.45 kJ
Explanation:
From first law of thermodynamics in chemistry, we have;
ΔU = Q + W
where;
ΔU is change in internal energy
Q is the net heat transfer
W is the net work done
We are given;
Q = 74.6 kJ
But Q will be negative since heat is released
Thus;
ΔU = -74.6 kJ + W
We are given;
Constant pressure; P = 35 atm = 35 × 101325 = 3546375 N/m²
Volume before reaction; Vi = 8.2 L = 0.0082 m³
Volume after reaction; V_f = 2.8 L = 0.0028 m³
Now,
W = -P(V_f - V_i)
W = - 3546375(0.0028 - 0.0082)
W = 19.15 KJ
Thus;
ΔU = Q + W
ΔU = -74.6 kJ + 19.15 KJ =
ΔU = −55.45 kJ
Answer:
Mg(s) + 2H⁺(aq) ⟶ Mg²⁺(aq) + H₂(g)
Explanation:
A net ionic equation shows all the ionic substances as ions and shows the correct state of each substance.
Answer:
1.<em>C</em><em>.</em><em>Keeps</em><em> </em><em>blood</em><em> </em><em>sugar</em><em> </em><em>low</em>
Explanation:
i just know number 1 am nt sure of number 2
Answer : This reaction is an exothermic reaction.
Explanation :
Endothermic reaction : It is defined as the chemical reaction in which the energy is absorbed from the surrounding.
In the endothermic reaction, the energy of reactant are less than the energy of product.
Exothermic reaction : It is defined as the chemical reaction in which the energy is released into the surrounding.
In the exothermic reaction, the energy of reactant are more than the energy of product.
Enthalpy of reaction : It is the difference between the energy of product and the reactant. It is represented as
.
The balanced chemical reaction will be:

From the reaction we conclude that the heat energy is released during the reaction that means this reaction is an exothermic reaction.
Hence, the reaction is an exothermic reaction.
Answer:
Transpiration is the correct answer mark me brainliest