Ethylene- C2H4 = 85.7% Carbon and 14.3% Hydrogen
Find the atomic masses for each element and multiply it by the number of atoms in the compound, then add.
C- 12.0 * 2= 24.0
H- 1.00 * 4= 4.00
-----------------------
28.0
Take the masses for each element and divide it by the total mass. Then change the answer to get the percent.
C 24.0 / 28.0= .857 = 85.7%
H 4.00 / 28.0= .143 = 14.3%
<h3>
Ethylene is 85.7% Carbon and 14.3% Hydrogen </h3>
There are 1000 mililiters in a liter, so 1000 ml for every liter, you have 5 liters, so:
5L*1000 = 5000 mL
Specificity. It’s really loose to say that something is fast, since speed can be scalarly linked and relative. I could say that both a car on the highway is fast, but so is the speed of light. The actual speed of something helps to do away with the arbitrary nature of using “fast” and “slow”; however, we’re still at step one of the person who is receiving the information is unfamiliar with the scale that the actual speed is defined in.
Right answer is B . Trust me .
Answer:
The weigth of a 90kg man standing on the moon is <u><em>147.6 N (option C)</em></u>
Explanation:
Weight is called the action exerted by the force of gravity on the body.
The mass (amount of matter that a body contains) of an object will always be the same, regardless of where it is located. Instead, the weight of the object will vary according to the force of gravity acting on it.
The formula that allows you to calculate the weight of any body is:
W = m*g
where:
- W = weight measured in N.
- m = mass measured in kg.
- g = acceleration of gravity measured in m/s². The acceleration of gravity g is the same for all objects that fall due to gravitational attraction, whatever their size or composition. For example, as an approximate value on Earth, g = 9.8 m/s².
In this case, the mass m has a value of 90 kg and the gravity g has a value of 1.64 m/s², which is the value of the acceleration of gravity of the moon. Then:
W=90 kg* 1.64 m/s²
<u><em>W= 147.6 N</em></u>
Finally, <u><em>the weigth of a 90kg man standing on the moon is 147.6 N (option C)</em></u>