Answer:
241.7 s
Explanation:
We are given that
Charge of particle=
Kinetic energy of particle=
Initial time=
Final potential difference=
We have to find the time t after that the particle is released and traveled through a potential difference 0.351 V.
We know that

Using the formula


Initial voltage=

Using the formula





Hence, after 241.7 s the particle is released has it traveled through a potential difference of 0.351 V.
Answer:
The inlet velocity is 21.9 m/s.
The mass flow rate at reach exit is 1.7 kg/s.
Explanation:
Given that,
Mass flow rate = 2 kg/s
Diameter of inlet pipe = 5.2 cm
Fifteen percent of the flow leaves through location (2) and the remainder leaves at (3)
The mass flow rate is

We need to calculate the mass flow rate at reach exit
Using formula of mass



We need to calculate the inlet velocity
Using formula of velocity

Put the value into the formula


Hence, The inlet velocity is 21.9 m/s.
The mass flow rate at reach exit is 1.7 kg/s.
The flow of electricity can be compared of water in the pipes because both water and electricity moves in the channel.
<h3>How we compare the flow of electricity to water?</h3>
Water flowing in pipes is like flowing of electricity in a circuit. A battery is like a pump from where electricity comes and moves in the circuit. Electrons flowing through wires are like water molecules flowing through pipes. So in comparison between water and electricity, both water and electricity are similar to each other in flowing and movement.
So we can conclude that the flow of electricity can be compared of water in the pipes because both water and electricity moves in the channel.
Learn more about electricity here: brainly.com/question/776932
#SPJ1
Answer:
As velocity is uniform then acceleration will be zero.
Explanation: