1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
EastWind [94]
3 years ago
6

A boy throws a ball up into the air with a speed of 8.2 m/s. The ball has a mass of 0.3 kg. How much gravitational potential ene

rgy will the ball have at the top of its flight? (Assume there is no air resistance
Physics
2 answers:
diamong [38]3 years ago
7 0
We can use the law of conservation of energy to solve the problem.

The total mechanical energy of the system at any moment of the motion is:
E=U+K = mgh + \frac{1}{2}mv^2
where U is the potential energy and K the kinetic energy.

At the beginning of the motion, the ball starts from the ground so its altitude is h=0 and therefore its potential energy U is zero. So, the mechanical energy is just kinetic energy:
E_i = K_i =  \frac{1}{2}mv^2 =  \frac{1}{2}(0.3 kg)(8.2 m/s)^2=10.09 J

When the ball reaches the maximum altitude of its flight, it starts to go down again, so its speed at that moment is zero: v=0. So, its kinetic energy at the top is zero. So the total mechanical energy is just potential energy:
E_f = U_f
But the mechanical energy must be conserved, Ef=Ei, so we have
U_f = K_i
and so, the potential energy at the top of the flight is
U_f = K_i = 10.09 J
zhenek [66]3 years ago
3 0

Answer:

10.1 like the other dude answered

Explanation:

You might be interested in
A particular 12 V car battery can send a total charge of 110 A·h (ampere-hours) through a circuit, from one terminal to the othe
DiKsa [7]
<h2>Answer:</h2>

(a) 3.96 x 10⁵C

(b) 4.752 x 10⁶ J

<h2>Explanation:</h2>

(a) The given charge (Q) is 110 A·h (ampere hour)

Converting this to A·s (ampere second) gives the number of coulombs the charge represents. This is done as follows;

=> Q = 110A·h

=> Q = 110 x 1A x 1h          [1 hour = 3600 seconds]

=> Q = 110 x A x 3600s

=> Q = 396000A·s

=> Q = 3.96 x 10⁵A·s = 3.96 x 10⁵C

Therefore, the number of coulombs of charge is 3.96 x 10⁵C

(b) The energy (E) involved in the process is given by;

E = Q x V           -----------------(i)

Where;

Q = magnitude of the charge = 3.96 x 10⁵C

V = electric potential = 12V

Substitute these values into equation (i) as follows;

E = 3.96 x 10⁵ x 12

E = 47.52 x 10⁵ J

E = 4.752 x 10⁶ J

Therefore, the amount of energy involved is 4.752 x 10⁶ J

8 0
3 years ago
A block of mass m sits at rest on a rough inclined ramp that makes an angle θ with the horizontal. What must be true about force
Vesnalui [34]
Ya know what the day you are talking to you about it and then send me the back link you got it and I don’t want
7 0
3 years ago
PLEASE HELP WITH GIVE BRAINLIEST!!! ❤️
sasho [114]
The force that the book exerts on the table is a normal force, not a weight force. (The book's weight doesn't act on the table, it acts on the book.) It's equal in magnitude to the weight of the book, again, because of the first law.
6 0
2 years ago
help me pass the test please there is a couple of questions in my profile to answer i am leaving this one for you to help ​
kompoz [17]

Answer:

0.5 m/s².

Explanation:

From the question given above, the following data were obtained:

Initial velocity (u) = 0 m/s

Final velocity (v) = 10 m/s

Time (t) = 20 s

Acceleration (a) =?

Acceleration can simply be defined as the rate of change of velocity with time. Mathematically, it is expressed as:

a = (v – u) / t

Where:

a is the acceleration.

v is the final velocity.

u is the initial velocity.

t is the time.

With the above formula, we can obtain the acceleration of the car as follow:

Initial velocity (u) = 0 m/s

Final velocity (v) = 10 m/s

Time (t) = 20 s

Acceleration (a) =?

a = (v – u) / t

a = (10 – 0) / 20

a = 10/20

a = 0.5 m/s²

Therefore, the acceleration of the car is 0.5 m/s².

6 0
2 years ago
A silver wire with resistivity 1.59 × 10-8 Ω-m carries a current density of 4.0 A/mm2, What is the magnitude of the electric fie
Nat2105 [25]

Answer:

Electric field, E = 0.064 V/m

Explanation:

It is given that,

Resistivity of silver wire, \rho=1.59\times 10^{-8}\ \Omega-m

Current density of the wire, J=4\ A/mm^2=4\times 10^6\ A/m^2

We need to find the magnitude of the electric field inside the wire. The relationship between electric field and the current density is given by :

E=J\times \rho

E=4\times 10^6\times 1.59\times 10^{-8}

E = 0.0636 V/m

or

E = 0.064 V/m

So, the magnitude of electric field inside the wire is 0.064 V/m. Hence, this is the required solution.

6 0
3 years ago
Other questions:
  • Driving home from school one day, you spot a ball rolling out into the street (Figure 5-21). You brake for 1.20 s, slowing your
    9·1 answer
  • A transform boundary occurs where two tectonic plates _____.?
    5·2 answers
  • Many cultures around the world still use a simple weapon called a blowgun, a tube with a dart that fits tightly inside. A sharp
    13·1 answer
  • Why do solar eclipses move from west to east?
    11·1 answer
  • A straightforward method of finding the density of an object is to measure its mass and then measure its volume by submerging it
    14·1 answer
  • As soon as parachute of a falling soldier opens, how will the accleration change?​
    9·1 answer
  • If the sun is a medium sized star, why does it look bigger than others?
    11·2 answers
  • The measured mass of a body is found to be 110g. The length is measured by a meter scale. Actual mass and length of the body are
    5·1 answer
  • You are designing a 108 cm3 right circular cylindrical can whose manufacture will take waste into account. There is no waste in
    6·1 answer
  • What is the magnitude of the Box's Acceleration?​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!