Answer:
a) Maximum speed = 25.28 m/s
b) Total time = 27.27 s
c) Total distance traveled = 402.43 m
Explanation:
a) Maximum speed is obtained after the end of acceleration
v = u + at
v = 13.5 + 1.9 x 6.2 = 25.28 m/s
Maximum speed = 25.28 m/s
b) We have maximum speed = 25.28 m/s, then it decelerates 1.2 m/s² until it stops.
v = u + at
0 = 25.28 - 1.2 t
t = 21.07 s
Total time = 6.2 + 21.07 = 27.27 s
c) Distance traveled for the first 6.2 s
s = ut + 0.5 at²
s = 13.5 x 6.2 + 0.5 x 1.9 x 6.2² = 120.22 m
Distance traveled for the second 21.07 s
s = ut + 0.5 at²
s = 25.28 x 21.07 - 0.5 x 1.2 x 21.07² = 282.21 m
Total distance traveled = 120.22 + 282.21 = 402.43 m
The correct answer would be True!
Answer:
The moment of inertia is 
Explanation:
The moment of inertia is equal:

If r is 
and 


Mark Brainliest please
Friction is a nonconservative force. Therefore work done against friction cannot be stored as potential energy and later converted back to kinetic the way work against gravity can.
Gravity always pulls objects such as a desk, book or person down. Thus, when you jump, gravity causes you to land on the ground. Friction, however, doesn't pull objects down. ... Instead friction occurs when something like a machine or individual pulls a sliding object in the opposite direction of another object.
Friction and gravity exist in every aspect of a person’s life. For example, almost every movement you make, such as walking and running, involves friction. When you throw a ball up, gravity causes the ball to fall down. A person sliding a book across a table creates friction. Nevertheless, differences between gravity and friction also exist. Force affects gravity and friction in different ways.