The momentum of the ball when it hits the ground is 4.89 kg.m/s.
The given parameters;
- <em>mass of the baseball, m = 0.145 kg</em>
- <em>height of fall of the ball, h = 58 m</em>
The final velocity of the ball when it hits the ground is calculated as follows;

The momentum of the ball when it hits the ground is calculated as follows;
P = mv
P = 0.145 x 33.72
P = 4.89 kg.m/s
Thus, the momentum of the ball when it hits the ground is 4.89 kg.m/s.
Learn more here:brainly.com/question/22035809
Answer:
The current in the coil is 4.086 A
Explanation:
Given;
radius of the circular coil, R = 2.5 cm = 0.025 m
number of turns of the circular coil, N = 740 turns
magnetic field at the center of the coil, B = 0.076 T
The magnetic field at the center of the coil is given by;

where;
μ₀ is permeability of free space = 4 x 10⁻⁷ m/A
I is the current in the coil
R is radius of the coil
N is the number of turns of the coil
The current in the circular coil is given by

Therefore, the current in the coil is 4.086 A
I believe the answer is A) Less work in less time.
Assuming that the angle is the same for both ropes, then D. is the answer. You have to consider also if the ropes are close together or far apart and if the force to move the object is in line with the ropes or perpendicular to them.
<span />