Answer:
50m; 0m/s.
Explanation:
Given the following data;
Initial velocity = 20m/s
Acceleration, a = - 4m/s²
Time, t = 5secs
To find the displacement, we would use the second equation of motion;

Substituting into the equation, we have;



S = 50m
Next, to find the final velocity, we would use the third equation of motion;
Where;
- V represents the final velocity measured in meter per seconds.
- U represents the initial velocity measured in meter per seconds.
- a represents acceleration measured in meters per seconds square.
<em>Substituting into the equation, we have;</em>
V = 0m/s
<em>Therefore, the displacement of the bus is 50m and its final velocity is 0m/s.</em>
The two things that must exist for an electric current to be produced are:
An electric potential between two bodies and a conducting path joining the bodies.
This comes from the fact that when there is a potential difference there is an electrical field and hence a force that makes some free charges to move in the conductor. For this reason, there's an electrical current.
Answer:
the ground when the ball hits it
Explanation:
A ball falls freely towards the Earth. If the action force is the Earth pulling down on the ball, then identify which of the following best describe the reaction force:
Answer: 80.384 cubic cm /min
Explanation:
Let V denote the volume and r denotes the radius of the spherical snowball .
Given : 
We know that the volume of a sphere is given by :-

Differentiating on the both sides w.r.t. t (time) ,w e get

When r= 8 cm

Hence, the volume of the snowball decreasing at the rate of 80.384 cubic cm /min.