The correct answer to the question is : Electric energy
EXPLANATION :
As per the question, we have an electric generator.
Before coming into any conclusion, first we have to understand the function of generator.
The generator is attached to the turbine. When the turbine rotates, the generator also starts rotating with it. Thanks to electromagnetic induction, the electricity is produced in the coil attached to the generator when it rotates.
Hence, from above, it is obvious that kinetic energy is converted into electric energy.
Answer:
c = 5 m
Explanation:
this exercise you want to divide the rectangular room into two triangular rooms
the area of triangles is
A = ½ base height
A = ½ 4 3
A = 6 m²
the length of the curtain can be found using the Pythagorean theorem
c² = b² + a²
c = √ (4² + 3²)
c = 5 m
this is the length of the curtain
6 is the answer I remember the answer from when I took this and it was easy
... I can’t see the attached assignment that you put on here.
Answer:
the magnitude of a uniform electric field that will stop these protons in a distance of 2 m is 10143.57 V/m or 1.01 × 10⁴ V/m
Explanation:
Given the data in the question;
Kinetic energy of each proton that makes up the beam = 3.25 × 10⁻¹⁵ J
Mass of proton = 1.673 × 10⁻²⁷ kg
Charge of proton = 1.602 × 10⁻¹⁹ C
distance d = 2 m
we know that
Kinetic Energy = Charge of proton × Potential difference ΔV
so
Potential difference ΔV = Kinetic Energy / Charge of proton
we substitute
Potential difference ΔV = ( 3.25 × 10⁻¹⁵ ) / ( 1.602 × 10⁻¹⁹ )
Potential difference ΔV = 20287.14 V
Now, the magnitude of a uniform electric field that will stop these protons in a distance of 2 m will be;
E = Potential difference ΔV / distance d
we substitute
E = 20287.14 V / 2 m
E = 10143.57 V/m or 1.01 × 10⁴ V/m
Therefore, the magnitude of a uniform electric field that will stop these protons in a distance of 2 m is 10143.57 V/m or 1.01 × 10⁴ V/m