Gamma rays, x-rays, ultraviolet, infrared, microwaves and radio waves<span>. Together with visible light, all these </span>types<span> of radiation </span>make up<span> what we call the </span>electromagnetic spectrum<span> </span>
infiltration and evaporation
Answer:
The amount of energy at each trophic level decreases as it moves through an ecosystem. As little as 10% of the energy at any trophic level is transferred to the next level, the rest is lost largely through metabolic processes as heat.
The magnitude of the electric field for 60 cm is 6.49 × 10^5 N/C
R(radius of the solid sphere)=(60cm)( 1m /100cm)=0.6m

Since the Gaussian sphere of radius r>R encloses all the charge of the sphere similar to the situation in part (c), we can use Equation (6) to find the magnitude of the electric field:

Substitute numerical values:

The spherical Gaussian surface is chosen so that it is concentric with the charge distribution.
As an example, consider a charged spherical shell S of negligible thickness, with a uniformly distributed charge Q and radius R. We can use Gauss's law to find the magnitude of the resultant electric field E at a distance r from the center of the charged shell. It is immediately apparent that for a spherical Gaussian surface of radius r < R the enclosed charge is zero: hence the net flux is zero and the magnitude of the electric field on the Gaussian surface is also 0 (by letting QA = 0 in Gauss's law, where QA is the charge enclosed by the Gaussian surface).
Learn more about Gaussian sphere here:
brainly.com/question/2004529
#SPJ4