The time period resulting in oscillations will be 1.986 seconds.
<h3>What is the period of oscillation?</h3>
The period is the amount of time it takes for a particle to perform one full oscillation. T is the symbol for it. Taking the reciprocal of the frequency yields the frequency of the oscillation.
The time period of the oscillation is;

Hence the time period resulting oscillations will be 1.986 seconds.
To learn more about the time period of oscillation refer to the link;
brainly.com/question/20070798
#SPJ1
The answer is distressing
Answer:
This difference is kept to a minimum because the resistance in transformers is a few tens of ohms and the resistance of modern voltmeters is of the order of MΩ.
Explanation:
A voltmeter is built by a galvanometer and a resistance in series, this set is connected in parallel to the resistance where the voltage is to be measured, therefore the voltage is divided between the voltmeter and the element to be measured, consequently the measured voltage It is less than the calculated one, since for them the resistance of the voltmeter is assumed infinite.
This difference is kept to a minimum because the resistance in transformers is a few tens of ohms and the resistance of modern voltmeters is of the order of MΩ.
Answer:
14
Explanation:
EWAN KO LANG DIN BASTA YAN ALAM KO
Answer:
This process is known as static electricity
Explanation:
When balloon is rubbed on the wool , a negative charge is usually formed. When the balloon is then held over—but not touching—some bits of paper, some of the bits jump up to the balloon. The bits which jump up to the balloon are positive charged and we know that unlike charges attract.
This process explains static electricity which is when the charges on a material are not in a balanced state.