Explanation:
It is given that,
A planet were discovered between the sun and Mercury, with a circular orbit of radius equal to 2/3 of the average orbit radius of Mercury.
Mass of the Sun, 
Radius of Mercury's orbit, 
Radius of discovered planet, 

Let T is the orbital period of such a planet. Using Kepler's third law of planetary motion as :




T = 4135214.625 s
or
T = 47.86 days
So, the orbital period of such a planet is 47.86 days. Hence, this is the required solution.
Answer:
0.0133 A
Explanation:
The time at which B=1.33 T is given by
1.33 = 0.38*t^3
t = (1.33/0.38)^(1/3) = 1.52 s
Using Faraday's Law, we have
emf = - dΦ/dt = - A dB/dt = - A d/dt ( 0.380 t^3 )
Area A = pi * r² = 3.141 *(0.025 *0.025) = 0.00196 m²
emf = - A*(3*0.38)*t^2
thus, the emf at t=1.52 s is
emf = - 0.00196*(3*0.38)*(1.52)^2 = -0.0052 V
if the resistance is 0.390 ohms, then the current is given by
I = V/R = 0.0052/0.390 = 0.0133 A
D , since Voltage is one joule per coulomb