Answer:
66.375 x 10⁻⁶ C/m
Explanation:
Using Gauss's law which states that the net electric flux (∅) through a closed surface is the ratio of the enclosed charge (Q) to the permittivity (ε₀) of the medium. This can be represented as
;
∅ = Q / ε₀ -----------------(i)
Where;
∅ = 7.5 x 10⁵ Nm²/C
ε₀ = permittivity of free space (which is air, since it is enclosed in a bag) = 8.85 x 10⁻¹² Nm²/C²
Now, let's first get the charge (Q) by substituting the values above into equation (i) as follows;
7.5 x 10⁵ = Q / (8.85 x 10⁻¹²)
Solve for Q;
Q = 7.5 x 10⁵ x 8.85 x 10⁻¹²
Q = 66.375 x 10⁻⁷ C
Now, we can find the linear charge density (L) which is the ratio of the charge(Q) to the length (l) of the rod. i.e
L = Q / l ----------------------(ii)
Where;
Q = 66.375 x 10⁻⁷ C
l = length of the rod = 10.0cm = 0.1m
Substitute these values into equation (ii) as follows;
L = 66.375 x 10⁻⁷C / 0.1m
L = 66.375 x 10⁻⁶ C/m
Therefore, the linear charge density (charge per unit length) on the rod is 66.375 x 10⁻⁶ C/m.
Answer:
a)
b) This value of specific heat is close to the specific heat of ice at -40° C and the specific heat of peat (a variety of coal).
c) The material is peat, possibly.
d) The material cannot be ice because ice doesn't exists at a temperature of 100°C.
Explanation:
Given:
- mass of aluminium,
- mass of water,
- initial temperature of the system,
- mass of copper block,
- temperature of copper block,
- mass of the other block,
- temperature of the other block,
- final equilibrium temperature,
We have,
specific heat of aluminium,
specific heat of copper,
specific heat of water,
Using the heat energy conservation equation.
The heat absorbed by the system of the calorie-meter to reach the final temperature.
The heat released by the blocks when dipped into water:
where
specific heat of the unknown material
For the conservation of energy :
so,
b)
This value of specific heat is close to the specific heat of ice at -40° C and the specific heat of peat (a variety of coal).
c)
The material is peat, possibly.
d)
The material cannot be ice because ice doesn't exists at a temperature of 100°C.
the answer is rust so the answer is rust