Answer:
The speed in of the plane is 115.47 m/sec
Step-by-step explanation:
Given:
Height at which the plane is flying = 6000 m
Angle of elevation at the radar base = 30 Degrees
Angle of elevation at the radar base after one minute = 60 Degrees
To Find:
The Speed of the plane in meter per second = ?
Solution:
Let us use the tangent of the angle to find the distance (d) to a point directly below plane:
<u>when the angle is 30 degrees</u>



d1 = 10392.3 meters
<u>when the angle is 60 degrees</u>



d2 = 3464.1 meters
<u>distance travelled by aircraft in 1 min is </u>
=>d1 - d2
=>0392.3 - 3464.1
= 6928.2 m/min
<u>Now converting to m/sec</u>
=>
=>115.47 m/sec
The answer is 60/210.
I hope I'm right
Brainliest please!
The correct answer is D. $246.6
(It is actually $246.597 but that is rounded to 246.6)
$189.69 x .3 = 56.907
$189.69 + $56.907 = $246.597
Please: Use "^" to denote exponentiation: <span>2x^2 + 8x - 12 = 0
Reduce this by div. every term by 2: </span><span>x^2 + 4x - 6 = 0
Here a=1, b=4 and c = -6. Square half of b, obtaining (4/2)^2 = 4, and add, and then subtract, this 4 to x^2 + 4x - 6:
</span> x^2 + 4x +4 - 4 - 6 = 0. Rewrite the square as (x+2)^2, obtaining new equation
(x+2)^2 = 10. Take the sqrt of both sides: x+2 = plus or minus sqrt(10).
Finally, solve for x: x = -2 plus or minus sqrt(10).
Answer:
G
Step-by-step explanation: