<span>We have ground strate configurations of electrons,if electrons are filled in order of increasing energy. When there are electrons are in higher orbitals, we have an atom in an excited state.
B, and C are excited states.
In B, 2 electrons can fit in the 4s orbital, and that should fill fully before the 4p orbitals.
In C, the same is true for 5s and 5p
In D, this is not an excited state because 4s fills before 3d</span>
Answer:
P₂ = 0.09 atm
Explanation:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
Given data:
Initial volume = 0.225 L
Initial pressure = 338 mmHg (338/760 =0.445 atm)
Initial temperature = 72 °C (72 +273 = 345 K)
Final temperature = -15°C (-15+273 = 258 K)
Final volume = 1.50 L
Final pressure = ?
Solution:
P₁V₁/T₁ = P₂V₂/T₂
P₂ = P₁V₁ T₂/ T₁ V₂
P₂ = 0.445 atm × 0.225 L × 258 K / 345 K × 1.50 L
P₂ = 25.83 atm .L. K / 293 K . L
P₂ = 0.09 atm
Answer:
6.32 moles of Fe
Explanation:
The given chemical equation is presented as follows;
2Fe + 3Cl₂ → 2FeCl₃
The mass of Cl₂ in the reaction = 336 grams
The molar mass of chlorine gas Cl₂ = 35.435 g/mol
The number of moles, n = Mass/(Molar mass)
The number of moles of Cl₂ in the reaction, n = 336 g/(35.435 g/mol) ≈ 9.842 moles
From the given reaction, 3 moles of Cl₂ react with 2 moles of Fe to produce 2 moles of FeCl₃
By the law of definite proportions, we have that 9.482 moles of Cl₂ will react with approximately 9.482 × 2/3 = 6.32 moles of Fe to produce approximately 6.32 moles of FeCl₃
Therefore, approximately 6.32 moles of Fe will be required to react with 336 grams of Cl₂.