It is true yes :) happy to help
Answer:

Explanation:
1. Calculate the moles of copper(II) hydroxide

2. Calculate the molecules of copper(II) hydroxide
I am not sure plz show me the question
Answer:

Explanation:
Hello!
In this case, since 12.75 g of calcium iodide has the following number of moles (molar mass = 293.89 g/mol):

In such a way, since 1 mole of calcium iodide contains 2 moles of atoms of iodine, and one mole of atoms of iodine contains 6.022x10²³ atoms (Avogadro's number), we compute the resulting atoms as shown below:

Best regards!
Answer: Rate in terms of disappearance of
= ![-\frac{1d[NO]}{2dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1d%5BNO%5D%7D%7B2dt%7D)
Rate in terms of disappearance of
= ![-\frac{1d[Cl_2]}{1dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1d%5BCl_2%5D%7D%7B1dt%7D)
Rate in terms of appearance of
= ![\frac{1d[NOCl]}{2dt}](https://tex.z-dn.net/?f=%5Cfrac%7B1d%5BNOCl%5D%7D%7B2dt%7D)
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

The rate in terms of reactants is given as negative as the concentration of reactants is decreasing with time whereas the rate in terms of products is given as positive as the concentration of products is increasing with time.
Rate in terms of disappearance of = ![-\frac{1d[NO]}{2dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1d%5BNO%5D%7D%7B2dt%7D)
Rate in terms of disappearance of = ![-\frac{1d[Cl_2]}{1dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1d%5BCl_2%5D%7D%7B1dt%7D)
Rate in terms of appearance of
= ![+\frac{1d[NOCl]}{2dt}](https://tex.z-dn.net/?f=%2B%5Cfrac%7B1d%5BNOCl%5D%7D%7B2dt%7D)