Answer:
A) Ca(s) + C(s) + 3/2 O₂(g) → CaCO₃(s)
Explanation:
Standard enthalpy of formation of a chemical is defined as the change in enthalpy durin the formation of 1 mole of the substance from its constituent elements in their standard states.
The consituent elements of calcium carbonate, CaCO₃, in their standard states (States you will find this pure elements in nature), are:
Ca(s), C(s) and O₂(g)
That means, the equation that represents standard enthalpy of CaCO₃ is:
<h3>A) Ca(s) + C(s) + 3/2 O₂(g) → CaCO₃(s)</h3><h3 />
<em>Is the equation that has ΔH° = -1207kJ/mol</em>
It is b have a great rest of your day
Answer:
i dont no ehh ahh i answer this question and this question is an dibitual sence
Explanation:
ahahalsbaowvapnavskqleveywpwndvsmavalsnsbalsmbsiabsopqmgdijsbsiwbskwnvskabhsksn
mabahslambbsoalnqnmlpigfqjskbdnmxnxb slabslwobdksjwmsnmaksbkakskslanksoqlmmbsjpqloyewqasfhjllmvxxwtyipeorirubamsbsmsnsmsoandbaksnsgaks
Answer: The system will try and offset the change.
Explanation: Any change in the equilibrium is studied on the basis of Le-Chatelier's principle.
This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in a direction to minimize the effect.
Thus if temperature is increased, the reaction will shift in a direction where temperature is decreasing and vice versa. Similarly if pressure is increased, the reaction will shift in a direction where pressure is decreasing and vice versa.
Answer:
The heaviest element to be created by exothermic nuclear fusion is Iron
Explanation:
Because it is the heaviest element produced during fusion without having to add energy, and it is the lightest element produced during fission without having to add energy. Energy-wise, everything in the universe wants to be iron! Iron is the most abundant element on Earth, making up 34.5 percent of Earth's mass.