(a)
The velocity of the meteorite just before hitting the ground is:

The loss of energy of the meteorite corresponds to the kinetic energy the meteorite had just before hitting the ground, so:

(b) 1 megaton of tnt is equal to

To find to how many megatons the meteorite energy loss

corresponds, we can set the following proportion

And so we find

So, 0.162 megatons.
(c) 1 Hiroshima bomb is equivalent to 13 kilotons (13 kT). The impact of the meteorite had an energy of

. So, to find to how many hiroshima bombs it corresponds, we can set the following proportion:

And so we find

So, the energy released by the impact of the meteorite corresponds to the energy of 12.46 hiroshima bombs.
Answer:
6862.96871 seconds
Explanation:
M = Mass of Planet
G = Gravitational constant
r = Radius
= Density
T = Rotation period
In this system the gravitational force will balance the centripetal force

.


Hence, proved

The rotation period of the astronomical object is 6862.96871 seconds
Answer:
Amorphous solids are composed of atoms or molecules that are in no particular order. Each particle is in a particular spot, but the particles are in no organized pattern. Examples include rubber and wax. Crystalline solids have a very orderly, three-dimensional arrangement of atoms or molecules
Explanation:
Answer:
self-maintained discharge
Explanation:
Answer:
92.81 psia.
Explanation:
The density of water by multiplying its specific gravity by the density of sea water.
SG = density of sea water/density of water
ρ = SG x ρw
1 kg/m3 = 62.4 lbm/ft^3
= 1.03 * 62.4
= 64.27lbm/ft^3.
The absolute pressure at 175 ft below sea level as this is the location of the submarine.
P = Patm +ρgh
= 14.7 + 64.27 * 32.2 * 175
Converting to pound force square inch,
= 14.7 + 64.27 * (32.2ft/s^2) * (175ft) * (1lbf/32.2lbm⋅ft/s^2) * (1ft^2/144in^2 )
= 14.7 + 78.11 psia
= 92.81 psia.