Answer:
1°C temperature change will be observed if a sample of 100 g of ethylene glycol antifreeze solution.
Explanation:
Mass of ethylene glycol = m = 100 g
Specific heat capacity of ethylene glycol = c = 3.5 J/g°C
Change in temperature of ethylene glycol = ΔT
Heat loss by the ethylene glycol = Q = 350 J


ΔT = 1°C
1°C temperature change will be observed if a sample of 100 g of ethylene glycol antifreeze solution.
Answer:
The mass of 0.280 mole sample of sodium hydroxide NaOH is 11.2 grams.
Explanation:
To know the mass in grams of 0.280 moles of sample of sodium hydroxide NaOH, you must know the molar mass of the compound, that is, the mass of one mole of a substance, which can be an element or a compound.
So you know:
- Na: 23 g/mole
- O: 16 g/mole
- H: 1 g/mole
So, the molar mass of NaOH is:
NaOH= 23 g/mole + 16 g/mole+ 1 g/mole= 40 g/mole
Then the following rule of three can be applied: if in 1 mole of sodium hydroxide there are 40 grams, in 0.280 moles how much mass is there?

mass= 11.2 grams
<u><em>The mass of 0.280 mole sample of sodium hydroxide NaOH is 11.2 grams.</em></u>
A glow stick will glow longer at lower temperatures than at room temperature, one can infer from the observation. Temperature and reaction time are the test variables.
We notice in this reaction that a glow stick stored in the freezer lights for a longer period of time than a glow stick stored at normal temperature. This implies that temperature affects how long a response lasts.
The most straightforward explanation for this observation is that glow sticks glow longer in colder temperatures than they do at room temperature; as a result, glow sticks kept in the freezer are observed to glow longer than glow sticks kept at room temperature.
To learn more about chemicals to the given link:
brainly.com/question/24600141
#SPJ4
Answer:
The answer should be 1000 kg / m3