Answer:
It helps the body remove heat through sweating.
Explanation:
When the weather is hot, the body tries to keep cool by sweating. The high specific heat capacity means that the body doesn't have to lose much water to stay cool.
The high specific heat capacity of water doesn’t heat the body, but it slows down the rate of heat loss when the weather is cool.
B is wrong. The body uses glucose, not water, as an energy source.
C is wrong. The high specific heat capacity of water is not connected with the body's ability to store it.
D is wrong. The high specific heat capacity of water doesn't heat the body, but it slows the rate at which it cools.
Answer:
The
for the reaction
will be 4.69.
Explanation:
The given equation is A(B) = 2B(g)
to evaluate equilibrium constant for 
![K_c=[B]^2[A]](https://tex.z-dn.net/?f=K_c%3D%5BB%5D%5E2%5BA%5D)
= 0.045
The reverse will be 
Then, ![K_c = \frac{[A]}{[B]^2}](https://tex.z-dn.net/?f=K_c%20%3D%20%5Cfrac%7B%5BA%5D%7D%7B%5BB%5D%5E2%7D)
= 
= 
The equilibrium constant for
will be


= 4.69
Therefore,
for the reaction
will be 4.69.
Answer:
(a) The coefficient of performance of an irreversible refrigeration cycle is always less than the coefficient of performance of a reversible refrigeration cycle when both exchange energy by heat transfer with the same two reservoirs.
Explanation:
According to the Kelvin–Planck statement of the second law of thermodynamics ,it is not possible to construct a device which operates in cycle and does not produce effect on the environment than the production of work.
We know that
Coefficient of performance is the ratio of desired effect to the work input in a cycle.
Given all option is correct but most appropriate option is a.
So the option a is correct
(a) The coefficient of performance of an irreversible refrigeration cycle is always less than the coefficient of performance of a reversible refrigeration cycle when both exchange energy by heat transfer with the same two reservoirs.
D = m/v. v = (3)^3 = 27.
D = 27/27. D = 1g/cm^3
Warmer atoms expand. There is also more movement. This is also explained when putting it into terms with solid vs. gas. in a solid, the atoms vibrate, but they can't move very far because there is not a lot of space between them. In a gas, on the other hand, the atoms are spread apart, and they move very fast. Putting it into context with water, the steam (gas) version is hot, and the ice cube (solid) version is cold.