When the initial speed given is 7.5m/s at an angle of 27° , ball will go
4.637 meters.
Assume no air opposition to the ball ;
Vertical component of ball is sin 27° = 0.453
0.453* 7.5 = 3.404 meters /sec
Time taken to reach ground is :
3.404 = -3.404+9.8*t
t= 6.808/9.8= 0.694 sec
Horizontal component is 7.5*cos27°= 6.682m/s
Distance = speed * time
=6.682 * 0.694
=4.637 meters
Horizontal distance it can cover in 0.694 sec is 4.637 meters
So range of ball is 4.637 meters.
Form of motion experienced by an object or particle that is projected near surface of the earth and moves along a curve is called Projectile motion. Three types of projectile motion are Horizontal projectile motion. Oblique projectile motion and Projectile motion on an inclined plane.
To know more about projectile motion, refer
brainly.com/question/24216590
#SPJ13
Alkali Metals ......................................
I actually believe for the first question, it would be complete destructive interference as the amplitude and the approximate wavelength for each are the same and will completely or entirely cancel out, rather than simply decreasing or lowering the amplitude as in the bottom question.
The amplitude for the first will be 0, as the 2 waves will cancel each other out. The amplitude of the second, will be 3x, I believe, assuming the amplitude of the first is 2x and the second is 1x, in a constructive interference, I believe the amplitudes would add up.
Likewise for the bottom, I believe you would be subtracting the supposed amplitude of the first which is 2x from 1x which would be 1x.
Answer:
it is a constant value that does not depend on the observer
Explanation:
Answer:
Explanation:
Amount of heat required can be found from the following relation
Q = mcΔT
m is mass of the body , c is specific heat and ΔTis rise in temperature .
Here m = 300 kg
c = 3350 J /kg k
ΔT = 30 - 25
= 5 °C
Putting the values in the expression above
Q = 300 x 3350 x 5
= 5025000 J
Rate at which energy is absorbed = 1200 J /s
Time required
= 5025000 / 1200
= 4187.5 S
= 69.8 minute
= 1 hour 9.8 mimutes.