<u>Answer:</u> The molar mass of the insulin is 6087.2 g/mol
<u>Explanation:</u>
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:

Or,

where,
= osmotic pressure of the solution = 15.5 mmHg
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (insulin) = 33 mg = 0.033 g (Conversion factor: 1 g = 1000 mg)
Volume of solution = 6.5 mL
R = Gas constant = 
T = temperature of the solution = ![25^oC=[273+25]=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5D%3D298K)
Putting values in above equation, we get:

Hence, the molar mass of the insulin is 6087.2 g/mol
Alexander Fleming and penicillin is used to help fight gram positive bacteria and other bacterial infections
To answer this lets first see how much 1 kg is equal to in cg.
1 kg = 100000 cg
Now lets multiply:-
100000 × 1.7 = <span>170000
</span>
So, 1.7 kg = <span>170000 cg
</span>
Hope I helped ya!!!
Answer:
A wind turbine transforms the mechanical energy of wind into electrical energy. A turbine takes the kinetic energy of a moving fluid, air in this case, and converts it to a rotary motion.
hope it helps (^^)
# Cary on learning