Answer:
There was 450.068g of water in the pot.
Explanation:
Latent heat of vaporisation = 2260 kJ/kg = 2260 J/g = L
Specific Heat of Steam = 2.010 kJ/kg C = 2.010 J/g = s
Let m = x g be the weight of water in the pot.
Energy required to vaporise water = mL = 2260x
Energy required to raise the temperature of water from 100 C to 135 C = msΔT = 70.35x
Total energy required = 

Hence, there was 450.068g of water in the pot.
Answer: 94.13 L
Explanation: In STP in an ideal gas there is a standard value for both temperature and pressure. At STP,pressure is equal to 1atm and the temperature at 0°C is equal to 273.15K. This problem is an ideal gas so we use PV=nRT where R is a constant R= 0.08205 L.atm/mol.K.
To find volume, derive the equation, it becomes V=nRT/P. Substitute the values. V= 4.20 mol( 0.08205L.atm/mol.K)(273.15K) / 1 atm = 94.13 L. The mole units, atm and K will be cancelled out and L will be the remaining unit which is for volume.
Answer:
Here's what I get
Explanation:
A plant extract is a mixture because it contains different substances: acetone or ethanol, chlorophylls A and B, carotene and xanthophylls.
It is homogeneous because it is a solution. There is only one phase: the liquid phase. You cannot see the pigments as separate phases.
You can separate the pigments by paper, thin layer, or column chromatography.
Many schools use paper chromatography, because paper is cheap.
As the mixture of pigments follows the solvent up the paper, they separate into different coloured bands according to their attractive forces to the cellulose in the paper.
The chlorophylls are strongly attracted to the paper, so they don't travel very far.
The nonpolar carotene molecules have little attraction to the polar cellulose, so they are carried along by the solvent front.
Heat can be absorbed or produced
Answer: D:wavelenght
Explanation: Students will understand that shorter wavelengths have higher frequency and energy.