Neutrons keep the Protons "in check", meaning Protons hold a very strong repulsive positive charge. The Neutrons counteract the repulsive force within a small space to keep the Nucleus stable.
I hope this helps! :)
Answer:
Final concentration of C at the end of the interval of 3s if its initial concentration was 3.0 M, is 3.06 M and if the initial concentration was 3.960 M, the concentration at the end of the interval is 4.02 M
Explanation:
4A + 3B ------> C + 2D
In the 3s interval, the rate of change of the reactant A is given as -0.08 M/s
The amount of A that has reacted at the end of 3 seconds will be
0.08 × 3 = 0.24 M
Assuming the volume of reacting vessel is constant, we can use number of moles and concentration in mol/L interchangeably in the stoichiometric balance.
From the chemical reaction,
4 moles of A gives 1 mole of C
0.24 M of reacted A will form (0.24 × 1)/4 M of C
Amount of C formed at the end of the 3s interval = 0.06 M
If the initial concentration of C was 3 M, the new concentration of C would be (3 + 0.06) = 3.06 M.
If the initial concentration of C was 3.96 M, the new concentration of C would be (3.96 + 0.06) = 4.02 M
ones that are answered through observing :)
3-Methylpentane is the IUPAC name for the substance.
whether in a continuous chain or a ring, the longest chain of carbons joined by a single bond serves as the basis for IUPAC nomenclature. According to a precise set of priorities, all deviations—whether they involve numerous bonds or atoms other than carbon and hydrogen—are denoted by prefixes or suffixes.
+3-Methylpentane is the IUPAC name for the substance in question. It has a lengthy chain of 5 carbon atoms, which gives it the prefix pent-, and a single bond is what gives it the postfix -ane (alkane). Given that the methyl group is present at the third carbon, it is 3-methylpentane.
Learn more about IUPAC Nomenclature here-
brainly.com/question/14379357
#SPJ9
They are examples of physical<span> contaminants .</span>