Leonardo da Vinci was a very talented artist who painted the Mona Lisa, the Last Supper, and many more famous paintings. These works were famous because of Leonardo’s understanding Linear Perspective, his integration of light and shadow, and his superb understanding of anatomy.
Answer:
Mass = 0.32 g
Explanation:
Given data:
Mass of CH₄ = ?
Volume of CH₄ = 500 mL (500 mL× 1L/1000 mL= 0.5 L)
Temperature = 273 K
Pressure = 1 atm
Solution:
Volume of CH₄:
500 mL (500 mL× 1L/1000 mL= 0.5 L)
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
By putting values,
1 atm× 0.5 L = n×0.0821 atm.L/ mol.K × 273 K
0.5 atm.L = n×22.4 atm.L/ mol
n = 0.5 atm.L / 22.4 atm.L/ mol
n = 0.02 mol
Mass in gram:
Mass = number of moles × molar mass
Mass = 0.02 mol × 16 g/mol
Mass = 0.32 g
Learning Objective
Define the law of conservation of mass
Key Points
The law of conservation of mass states that mass in an isolated system is neither created nor destroyed by chemical reactions or physical transformations.
According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants.
The law of conservation of mass is useful for a number of calculations and can be used to solve for unknown masses, such the amount of gas consumed or produced during a reaction.
Terms
reactantAny of the participants present at the start of a chemical reaction. Also, a molecule before it undergoes a chemical change.
law of conservation of massA law that states that mass cannot be created or destroyed; it is merely rearranged.
productA chemical substance formed as a result of a chemical reaction.
History of the Law of the Conservation of Mass
The ancient Greeks first proposed the idea that the total amount of matter in the universe is constant. However, Antoine Lavoisier described the law of conservation of mass (or the principle of mass/matter conservation) as a fundamental principle of physics in 1789.
Antoine LavoisierA portrait of Antoine Lavoisier, the scientist credited with the discovery of the law of conservation of mass.
This law states that, despite chemical reactions or physical transformations, mass is conserved — that is, it cannot be created or destroyed — within an isolated system. In other words, in a chemical reaction, the mass of the products will always be equal to the mass of the reactants.
The Law of Conservation of Mass-Energy
This law was later amended by Einstein in the law of conservation of mass-energy, which describes the fact that the total mass and energy in a system remain constant. This amendment incorporates the fact that mass and energy can be converted from one to another. However, the law of conservation of mass remains a useful concept in chemistry, since the energy produced or consumed in a typical chemical reaction accounts for a minute amount of mass.
We can therefore visualize chemical reactions as the rearrangement of atoms and bonds, while the number of atoms involved in a reaction remains unchanged. This assumption allows us to represent a chemical reaction as a balanced equation, in which the number of moles of any element involved is the same on both sides of the equation. An additional useful application of this law is the determination of the masses of gaseous reactants and products. If the sums of the solid or liquid reactants and products are known, any remaining mass can be assigned to gas.
Answer:
<h3>The answer is 1.04 g/mL</h3>
Explanation:
The density of a substance can be found by using the formula

From the question
mass of coke = 21.36 g
volume = 20.5 mL
So we have

We have the final answer as
<h3>1.04 g/mL</h3>
Hope this helps you
Changed the way quotas were allocated by ending the National Origins Formula that had been in place in the United States since the Emergency Quota Act<span> of 1921.</span>