1) it explains about stability of an atom by including stationary state.
2) it explains tge quantization of energy.
3) it gives the concept of angular momentum of a revolving electron.
Answer:
C. 26.4 kJ/mol
Explanation:
The Chen's rule for the calculation of heat of vaporization is shown below:
![\Delta H_v=RT_b\left [ \frac{3.974\left ( \frac{T_b}{T_c} \right )-3.958+1.555lnP_c}{1.07-\left ( \frac{T_b}{T_c} \right )} \right ]](https://tex.z-dn.net/?f=%5CDelta%20H_v%3DRT_b%5Cleft%20%5B%20%5Cfrac%7B3.974%5Cleft%20%28%20%5Cfrac%7BT_b%7D%7BT_c%7D%20%5Cright%20%29-3.958%2B1.555lnP_c%7D%7B1.07-%5Cleft%20%28%20%5Cfrac%7BT_b%7D%7BT_c%7D%20%5Cright%20%29%7D%20%5Cright%20%5D)
Where,
is the Heat of vaoprization (J/mol)
is the normal boiling point of the gas (K)
is the Critical temperature of the gas (K)
is the Critical pressure of the gas (bar)
R is the gas constant (8.314 J/Kmol)
For diethyl ether:



Applying the above equation to find heat of vaporization as:
![\Delta H_v=8.314\times307.4 \left [ \frac{3.974\left ( \frac{307.4}{466.7} \right )-3.958+1.555ln36.4}{1.07-\left ( \frac{307.4}{466.7} \right )} \right ]](https://tex.z-dn.net/?f=%5CDelta%20H_v%3D8.314%5Ctimes307.4%20%5Cleft%20%5B%20%5Cfrac%7B3.974%5Cleft%20%28%20%5Cfrac%7B307.4%7D%7B466.7%7D%20%5Cright%20%29-3.958%2B1.555ln36.4%7D%7B1.07-%5Cleft%20%28%20%5Cfrac%7B307.4%7D%7B466.7%7D%20%5Cright%20%29%7D%20%5Cright%20%5D)

The conversion of J into kJ is shown below:
1 J = 10⁻³ kJ
Thus,

<u>Option C is correct</u>
The number of neutrons in an atom is the number of particles present in its nucleus.
The atomic number is the number of protons whereas the mass number is the number of protons and number of neutrons together
This implies that the number of neutrons is the atom's mass number
Answer:
The correct answer is b.
Explanation:
The quantum number n specifies the energetic level of the orbital, the first level being the one with the least energy. As n increases, the probability of finding the electron near the nucleus decreases and the orbital energy increases.
In the case of atoms with more than one electron, the quantum number l also determines the sublevel of energy in which an orbital is found, within a certain energy level. The value of l is designated by the letters s, p, d, and f.
Have a nice day!
Before we describe the phases of the Moon, let's describe what they're not. Some people mistakenly believe the phases come from Earth's shadow cast on the Moon. Others think that the Moon changes shape due to clouds. These are common misconceptions, but they're not true. Instead, the Moon's phase depends only on its position relative to Earth and the Sun.
The Moon doesn't make its own light, it just reflects the Sun's light as all the planets do. The Sun always illuminates one half of the Moon. Since the Moon is tidally locked, we always see the same side from Earth, but there's no permanent "dark side of the Moon." The Sun lights up different sides of the Moon as it orbits around Earth – it's the fraction of the Moon from which we see reflected sunlight that determines the lunar phase.