Answer:
210
Explanation:
A ball rolls horizontally off the cliff at a speed of 30 m/s. It takes 7 seconds for the ball to hit the ground. What is the height of the cliff and the horizontal distance traveled by the ball?
S = (1/2)*9.8 m/s^2 * 7^2 = 240.1 m if the ball is very dense so air resistance, and therefore terminal velocity, can be ignored.
S = v * t = 30 m/s * 7 s = 210 m for the horizontal distance, again assuming negligible air resistance.
Answer:
they cant travel through a vacuum
Answer:
centripital acceleration= v^2/r
r = v^2/a
r=31.8×31.8/29
r=34.8703m
Explanation:
the maximum acceleration is obtained with minimum radius.
Power=Energy
72,000/60 = 1200 watts
:)
1) The mass of the continent is 
2) The kinetic energy of the continent is 1683 J
3) The speed of the jogger must be 6.57 m/s
Explanation:
1)
The continent can be represented as a slab of size

and depth

So its volume is

We also know that the density of the continent is

Therefore, we can calculate its mass as:

2)
The kinetic energy of the continent is given by

where
m is its mass
v is its speed
We have already calculate its mass, while the speed is
v = 3.2 cm/year
We have to convert into SI units first, as follows:

The mass is

So, the kinetic energy of the continent is

3)
Here we have a jogger having the same kinetic energy of the continent, so

And the kinetic energy of the jogger can be expressed as

where
m = 78 kg is the mass of the jogger
v is his speed
We can therefore re-arrange the equation to find the speed of the man, and we get:

Learn more about kinetic energy:
brainly.com/question/6536722
#LearnwithBrainly