Answer:
<em>The car will be moving at 5.48 m/s at the bottom of the hill</em>
Explanation:
<u>Principle of Conservation of Mechanical Energy</u>
In the absence of friction, the total mechanical energy is conserved. That means that
is constant, being U the potential energy and K the kinetic energy
U=mgh

When the car is at the top of the hill, its speed is 0, but its height h should be enough to produce the needed speed v down the hill.
The Kinetic energy is then, zero. When the car gets enough speed we assume it is achieved at ground level, so the potential energy runs out to zero but the Kinetic is at max. So the initial potential energy is transformed into kinetic energy.
We are given the initial potential energy U=45 J. It all is transformed to kinetic energy at the bottom of the hill, thus:

Multiplying by 2:

Dividing by m:

Taking square roots:



v = 5.48 m/s
The car will be moving at 5.48 m/s at the bottom of the hill
Answer:
Area is a scalar quantity because there is no need of direction to define and also follow the algebraic summation. When we talk about vector there exists a frame of reference with a certain origin. It actually depends on the fact of the physical area, but if that factor changes to a non-directional object such as a rug spread on the floor, you can consider the area or a region as a scalar. (*Scalars are quantities that are fully described by a magnitude (or numerical value) alone.)
Hope this helps!
Answer:
C
Explanation:
- Let acceleration due to gravity @ massive planet be a = 30 m/s^2
- Let acceleration due to gravity @ earth be g = 30 m/s^2
Solution:
- The average time taken for the ball to cover a distance h from chin to ground with acceleration a on massive planet is:
t = v / a
t = v / 30
- The average time taken for the ball to cover a distance h from chin to ground with acceleration g on earth is:
t = v / g
t = v / 9.81
- Hence, we can see the average time taken by the ball on massive planet is less than that on earth to reach back to its initial position. Hence, option C
Very sad to hear from her
If a ball is if a ball is dropped from a 576ft building it would take about 8 seconds for it to hit the ground.