Answer:
To identify the momentum of object 1, you must multiply mass (m) and velocity(v) to find momentum.
Object 1 has momentum of 8 kg. m/s before collision.
Object 1 has momentum of 0 kg. m/s before collision.
The combined mass after the collision had a total momentum of 8 kg. m/s.
Explanation:
Momentum of the object is given by,
Momentum = mass × velocity
For object 1:
Momentum = mass × velocity
Momentum = 2 × 4
Momentum = 8 kg. m/s
For object 2:
Momentum = mass × velocity
Momentum = 6 × 0
Momentum = 0 kg. m/s
For object 1 + object 2:
Momentum = mass × velocity
Momentum = 8 × 1
Momentum = 8 kg. m/s
To identify the momentum of object 1, you must multiply mass (m) and velocity(v) to find momentum.
Object 1 has momentum of 8 kg. m/s before collision.
Object 1 has momentum of 0 kg. m/s before collision.
The combined mass after the collision had a total momentum of 8 kg. m/s.
I think its A , it makes the most sense
Answer:Velocity = 6.325m/s
Directional angle= 18.43°
Explanation:
Using Right angle triangle
Let Velocity of ballon&hawk be VHB represent the height of the triangle.
Let Velocity of balloon angle ground be VBG represent adjacent of the triangle.
Let Velocity of hawk and ground BE VHG represent the hypothesis.
Theta = opp/Adj= VHB/VBG
using pythagorean
VHG= SQRT(VHB^2+VBG^2)
VHG= sqrt(2^2+6^2)
VHG= sqrt(4+36)
VHG= 6.325m/s
Tan theta= 2/6
Tan theta =0.3333
Tan^-1 0.3333=18.43°
Answer:
A
Explanation:
The toaster was too high so its the increase in eat