[H3O+] is just the same with [H+]. There are quite a few
relationships between [H+] and [OH−]
ions. And because there is a large range of number between 10 to 10-15
M, the pH is used. pH = -log[H+] and pOH = -log[OH−]. In aqueous solutions, [H+
][OH- ] = 10-14.
Summer (but only in the northern hemisphere)
Answer:
(B) The total internal energy of the helium is 4888.6 Joules
(C) The total work done by the helium is 2959.25 Joules
(D) The final volume of the helium is 0.066 cubic meter
Explanation:
(B) ∆U = P(V2 - V1)
From ideal gas equation, PV = nRT
T1 = 21°C = 294K, V1 = 0.033m^3, n = 2moles, V2 = 2× 0.033=0.066m^3
P = nRT ÷ V = (2×8.314×294) ÷ 0.033 = 148140.4 Pascal
∆U = 148140.4(0.066 - 0.033) = 4888.6 Joules
(C) P2 = P1(V1÷V2)^1.4 =148140.4(0.033÷0.066)^1.4= 148140.4×0.379=56134.7 Pascal
Assuming a closed system
(C) Wc = (P1V1 - P2V2) ÷ 0.4 = (148140.4×0.033 - 56134.7×0.066) ÷ 0.4 = (4888.6 - 3704.9) ÷ 0.4 = 1183.7 ÷ 0.4 = 2959.25 Joules
(C) Final volume = 2×initial volume = 2×0.033= 0.066 cubic meter
Answer:
from the position of the center of the Sun
Explanation:
As we know that mass of Sun and Jupiter is given as


distance between Sun and Jupiter is given as

now let the position of Sun is origin and position of Jupiter is given at the position same as the distance between them
so we will have


from the position of the center of the Sun
Answer:
D = 25 miles
Explanation:
To solve this problem, we just need to know how much time it took both bicyclists to collide and that will be the same amount of time that the bee flew at 25miles per hour. With those values we could calculate the distance it traveled.
Since both bicyclists collide, we know that Xa=Xb, so:
Xa = V*t = 10*t and Xb = 20 - V*t = 20 - 10*t
10*t = 20 - 10*t Solving for t:
t = 1 hour Now we can calculate the distance for the bee:
D = Vbee * t = 25 * 1 = 25 miles