1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ziro4ka [17]
3 years ago
9

A car with mass 1500 kg moves with constant velocity of 36 m/s. The driver sees a group of cows in front and he immediately step

s on the brake pedal and manage to stop the car in 6 s. The distance of the cows from the car when the driver spotted them is 160 m. How far are the cows from the car when the car stops?
Physics
1 answer:
Crazy boy [7]3 years ago
6 0
From laws of motion:

S = ( \frac{v + u}{2} ) \times t
Where S is the distance/displacement (as you would call it) which is unknown
v = final velocity which is 0m/s (this is because the car stops)
u = initial velocity which is 36m/s (from the data given)
t = time taken for the distance to be covered and it is 6s


Substitute the values, hence:
S = ( \frac{0 + 36}{2} ) \times 6
S = (18) \times 6 \\  \\ S = 108m

But this is merely the distance he travelled in the 6 seconds he was trying to stop the car.

Therefore, the distance between the car and the cows = 160-108
Distance = 52m
You might be interested in
Chan Hee is inflating a basketball using an air pump. He notices that the pump gets warm as he uses it. What is a good hypothesi
likoan [24]

"If air in a pump is squeezed more, then the air gets hotter because energy is added to it" is a good hypothesis that could lead to new experimentation.

<u>Option: C</u>

<u>Explanation:</u>

If we use a pump to inflate a basketball, we initially pull the handle to draw air to fill the sphere in. As we move it down we apply a great deal of force to pump in air through the pin's tiny hole because of this resistance force in the air we find the tube warmed.

A needle of ball pump is a metal tube in which air, from an inflating pump to a sports ball, moves through it. In continuous-flow operation, pumps are often used and built to produce comparatively little pressure towards a free-flowing environment with limited back pressure. Such pumps have a fixed configuration and work freely along their power curve as circumstances change.

8 0
2 years ago
Where is the deepest cave in the world? How far down is it located?
Sergeeva-Olga [200]

Answer:

Geology Notes

1 Veryovkina Cave 2212[1] 13.5 km (8.4 mi)[1] Abkhazia / Georgia 43°23′52″N 40°21′37″E.

6 0
2 years ago
The cable of the 1800kg elevator cab in Fig. 8−56 snaps when the cab is at rest at the first floor, where the cab bottom is a di
drek231 [11]

a ) The speed of the cab just before it hits the spring = 7.4 m / s

b ) The maximum distance x that the spring is compressed = 0.9 m

c ) The distance that the cab will bounce back up the shaft = 2.8 m

a ) The speed of the cab just before it hits the spring,

Ki + Pi = K final + P final + W

1 / 2 m vo² + m g hi = 1 / 2 m v² + m g h + f d

0 + ( 1800 * 9.8 * 3.7 m ) = ( 1 / 2 * 1800 * v² ) + 0 + ( 4400 * 3.7 )

v = 7.4 m / s

b ) The maximum distance x that the spring is compressed,

Ki + Pi = K final + P final + W + Fs

1 / 2 m vo² + m g x = 1 / 2 m v² + m g h + f d + 1 /2 k x²

( 1/2 * 1800 * 7.4² ) + ( 1800 * 9.8 * x ) =0 + 0+ ( 4400 * x ) + ( 1/2 * 1800 * x² )

75000 x² + 13420 x - 50625 = 0

x = 0.9 m

c ) The distance that the cab will bounce back up the shaft,

Ki + Pi + Fs = K final + P final + W

1 / 2 m vo² + m g x + 1 /2 k x² = 1 / 2 m v² + m g h + f d

0 + 0 + ( 1 / 2 * 0.15 * 0.9² ) = 0 + ( 1800 * 9.8 * h ) + ( 4400 * h )

h = 2.8 m

Therefore,

a ) The speed of the cab just before it hits the spring = 7.4 m / s

b ) The maximum distance x that the spring is compressed = 0.9 m

c ) The distance that the cab will bounce back up the shaft = 2.8 m

To know more about law of conservation of energy

brainly.com/question/12050604

#SPJ4

3 0
8 months ago
a bus is moving at 22m/s [E] for 12s. Then the bus driver slows down at 1.2m/s2 [W] until the bus stops. Determine the total dis
KatRina [158]
The total displacement is equal to the total distance. For the east or E direction, the distance is determined using the equation:

d = vt = (22 m/s)(12 s) = 264 m

For the west or W direction, we use the equations:
a = (v - v₀)/t
d = v₀t + 0.5at²

Because the object slows down, the acceleration is negative. So,
-1.2 m/s² = (0 m/s - 22 m/s)/t
t = 18.33 seconds
d = (22 m/s)(18.33 s) + 0.5(-1.2 m/s²)(18.33 s)²
d = 201.67 m

Thus,
Total Displacement = 264 m +  201.67 m = 465.67 or  approximately 4.7×10² m.
7 0
2 years ago
Importance of simple machines pleasecgive answer in points​
oksian1 [2.3K]

Answer:

Explanation:

The inclined plane

An inclined plane consists of a sloping surface; it is used for raising heavy bodies. The plane offers a mechanical advantage in that the force required to move an object up the incline is less than the weight being raised (discounting friction). The steeper the slope, or incline, the more nearly the required force approaches the actual weight. Expressed mathematically, the force F required to move a block D up an inclined plane without friction is equal to its weight W times the sine of the angle the inclined plane makes with the horizontal (θ). The equation is F = W sin θ.

The lever

A lever is a bar or board that rests on a support called a fulcrum. A downward force exerted on one end of the lever can be transferred and increased in an upward direction at the other end, allowing a small force to lift a heavy weight.

The wedge

A wedge is an object that tapers to a thin edge. Pushing the wedge in one direction creates a force in a sideways direction. It is usually made of metal or wood and is used for splitting, lifting, or tightening, as in securing a hammer head onto its handle.

The wheel and axle

A wheel and axle is made up of a circular frame (the wheel) that revolves on a shaft or rod (the axle). In its earliest form it was probably used for raising weights or water buckets from wells.

Its principle of operation is best explained by way of a device with a large gear and a small gear attached to the same shaft. The tendency of a force, F, applied at the radius R on the large gear to turn the shaft is sufficient to overcome the larger force W at the radius r on the small gear. The force amplification, or mechanical advantage, is equal to the ratio of the two forces (W:F) and also equal to the ratio of the radii of the two gears (R:r)

7 0
2 years ago
Other questions:
  • What is the distance of the spaceship from the earth
    11·1 answer
  • Suppose a piece of dust has fallen on a CD. If the spin rate of the CD is 500 rpm, and the piece of dust is 4.3 cm from the cent
    6·1 answer
  • Jason took 6 hours to travel 540 km. For the first 140 km, he
    13·1 answer
  • Which statements describe how a machine can help make work easier? Check all that apply.
    5·1 answer
  • A yo-yo is made from two uniform disks, each with mass m and radius R, connected by a light axle of radius b. A light, thin stri
    12·1 answer
  • How many covalent bonds can be formed by Nitrogen? Please explain
    11·1 answer
  • Please help!!!! on both of them this is physics not math
    14·1 answer
  • A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A
    9·1 answer
  • Uniform<br>Define, velocity with an encomple.​
    10·1 answer
  • Voltage is 50v and capacitance is 30c what is the charge<br>​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!