here since string is attached with a mass of 2 kg
so here tension force in the rope is given as

here we will have

now we will have speed of wave given as

here we will have


now we know that frequency is given as
F = 100 Hz
now wavelength is given as


so wavelength will be 0.16 m
Answer:
375 ms
Explanation:
the frequency of metronome , f = 160 beats per minute
f = 160 /60 beats per sec
f = 2.67 beats /s
the period of a single beat , T = 1/f
T = 1/2.67 s
T = 0.375 s = 375 ms
the period of a single beat is 375 ms
Answer:

Explanation:
For this case we can use the second law of Newton given by:

The friction force on this case is defined as :

Where N represent the normal force,
the kinetic friction coeffient and a the acceleration.
For this case we can assume that the only force is the friction force and we have:

Replacing the friction force we got:

We can cancel the mass and we have:

And now we can use the following kinematic formula in order to find the distance travelled:

Assuming the final velocity is 0 we can find the distance like this:

Answer:

Explanation:
When the car is under an accelerating force and hits a tree, the instant force received by the tree is the same force that is accelerating the car.
The accelerating force can be calculated using Newton's second law:

Where m is the mass of the car and a is the acceleration.


Answer
given,
before collision
mass of car A = m_a = 1300 kg
velocity of car A = v_a = 35 mph
mass of car B = m_b= 1000 kg
velocity of car B = v_b = 25 mph
after collision
V_a = 30 mph
V_b = 31.5 mph
Initial momentum



final momentum



here initial momentum is equal to the final momentum of the car.
hence, momentum is conserved in the collision.