Boyle's law says that the volume of a gas varies inversely with the pressure. When the volume of a certain gas is 4l , the pressure is 720 kpa (kilopascals). What is the pressure when the volume is 10l ?
v₀ = initial speed of the object = 8 meter/second
v = final speed of the object = 16 meter/second
t = time taken to increase the speed = 10 seconds
d = distance traveled by the object in the given time duration = ?
using the kinematics equation
d = (v + v₀) t/2
inserting the above values in the above equation
d = (16 + 8) (10)/2
d = 120 meter
Answer:
K = 80.75 MeV
Explanation:
To calculate the kinetic energy of the antiproton we need to use conservation of energy:

<em>where
: is the photon energy,
: are the rest energies of the proton and the antiproton, respectively, equals to m₀c²,
: are the kinetic energies of the proton and the antiproton, respectively, c: speed of light, and m₀: rest mass.</em>
Therefore the kinetic energy of the antiproton is:
<u>The proton mass is equal to the antiproton mass, so</u>:

Hence, the kinetic energy of the antiproton is 80.75 MeV.
I hope it helps you!
Answer:
1.25 m/s
Explanation:
m1v1+m2v2=m1v1f+m2v2f
(1425*13)+(1175*0)=(1425*v1f)+(1175*14.25)
18525+0=1425(v1f)+16743.75
1781.25=1425(v1f)
v1f=1.25 m/s
Answer:
27.82998 km/min
Explanation:
To convert m/sec into km/hr, multiply the number by 18 and then divide it by 5.