Speed of wave is given as

Wavelength of the wave is given as

now from the formula of wave time period we can say




so it will have time period of T = 4 s
Answer:
Explanation:
Given that,
Assume number of turn is
N= 1
Radius of coil is.
r = 5cm = 0.05m
Then, Area of the surface is given as
A = πr² = π × 0.05²
A = 7.85 × 10^-3 m²
Resistance of
R = 0.20 Ω
The magnetic field is a function of time
B = 0.50exp(-20t) T
Magnitude of induce current at
t = 2s
We need to find the induced emf
This induced voltage, ε can be quantified by:
ε = −NdΦ/dt
Φ = BAcosθ, but θ = 90°, they are perpendicular
So, Φ = BA
ε = −NdΦ/dt = −N d(BA) / dt
A is a constant
ε = −NA dB/dt
Then, B = 0.50exp(-20t)
So, dB/dt = 0.5 × -20 exp(-20t)
dB/dt = -10exp(-20t)
So,
ε = −NA dB/dt
ε = −NA × -10exp(-20t)
ε = 10 × NA exp(-20t)
Now from ohms law, ε = iR
So, I = ε / R
I = 10 × NA exp(-20t) / R
Substituting the values given
I = 10×1× 7.85 ×10^-3×exp(-20×2)/0.2
I = 1.67 × 10^-18 A
Here we deal with a lever law. It states that product of force and distance from a fixed point on a lever is equal on both sides.
F₁*d₁ = F₂*d₂
By analysing this formula we can see that applying small force on a great length equals great force on a small length.
To remove nail we need to apply certain force. If we use F₁ for this required force we can see that on other side we need to apply certain force. If we have greater arm length we need smaller force. In a crowbar arm length along which we apply force is greater than length of our arm. This leads to a conclusion that we need smaller force when using crowbar. Depending on the length of a nail it is possible that we need to apply force that is greater than force required to remove nail.