<u>Answer:</u> The expression for equilibrium constant is ![K_{eq}=\frac{[HOCl]^2}{[H_2O][Cl_2]^2}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BHOCl%5D%5E2%7D%7B%5BH_2O%5D%5BCl_2%5D%5E2%7D)
<u>Explanation:</u>
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
For the general chemical equation:

The expression for
is given as:
![K_c=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
For the given chemical reaction:

The expression for
is given as:
![K_{eq}=\frac{[HOCl]^2[HgO.HgCl_2]}{[HgO]^2[H_2O][Cl_2]^2}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BHOCl%5D%5E2%5BHgO.HgCl_2%5D%7D%7B%5BHgO%5D%5E2%5BH_2O%5D%5BCl_2%5D%5E2%7D)
The concentration of solid is taken to be 0.
So, the expression for
is given as:
![K_{eq}=\frac{[HOCl]^2}{[H_2O][Cl_2]^2}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BHOCl%5D%5E2%7D%7B%5BH_2O%5D%5BCl_2%5D%5E2%7D)
If there was an inverse relationship between the temperature and the volume, our daily lives change because in high temperature things will contract.
<h3>What if there was an inverse relationship between the temperature and the volume?</h3>
If there was an inverse relationship between the temperature and the volume then with increasing temperature decrease occur in the volume of a substance. If this type of relationship is present in the world, the objects will contract when the temperature is high and expand when the temperature is low which make the solid materials expand at winter and contract at summer season.
So we can conclude that if there was an inverse relationship between the temperature and the volume, our daily lives change because in high temperature things will contract.
Learn more about temperature here: brainly.com/question/25677592
#SPJ1
Answer : The change in internal energy is, 900 Joules.
Solution : Given,
Heat given to the system = +1400 J
Work done by the system = -500 J
Change in internal energy is equal to the sum of heat energy and work done.
Formula used :

where,
= change in internal energy
q = heat energy
w = work done
As per question, heat is added to the system that means, q is positive and work done by the system that means, w is negative.
Now put all the given values in the above formula, we get

Therefore, the change in internal energy is 900 J.
The change in internal energy depends on the heat energy and work done. As we will change in the heat energy and work done, then changes will occur in the internal energy. Hence, the energy is conserved.
it should be B. solution; a liquid mixture in which the minor component (the solute) is uniformly distributed within the major component (the solvent).
witch basically means it sorts it self out when left a lone, like soap and water when not touched or the oil in the dressings you get at the store. hope this helped :D
Answer: 2. I see two colours in the test tube, white and grey at the bottom.