Answer:
the description of a mineral species usually includes its common physical properties such as habit, hardness, lustre, diaphaneity, colour, streak, tenacity, cleavage, fracture, parting, specific gravity, magnetism, fluorescence, radioactivity, as well as its taste or smell and its reaction to acid.
Its doesn't dissolve in water!
Electron microscopes differ from light microscopes in that they produce an image of a specimen by using a beam of electrons rather than a beam of light. Electrons have much a shorter wavelength than visible light, and this allows electron microscopes to produce higher-resolution images than standard light microscopes
Answer:
This question is incomplete.
Explanation:
This question is incomplete because of the absence of given mass and volume, however, the steps below will help solve the completed question. The molarity (M) of a solution is the number of moles of solute per liter of solvent. The formula is illustrated below;
Molarity = number of moles (n) / volume (in liter or dm³)
To calculate the number of moles of NaC₂H₃O₂, we say
number of moles (n) =
given or measured mass of NaC₂H₃O₂ ÷ molar mass of NaC₂H₃O₂
The volume of the solvent must be in liter (same as dm³). Thus, to convert mL to liter, we divide by 1000
The unit for Molarity is M (Molar concentration), mol/L or mol/dm³
Answer:
Name Atomic Number Electron Configuration Period 1 Hydrogen 1 1s1 Helium 2 1s2 Period 2 Lithium 3 1s2 2s1 Beryllium 4 1s2 2s2 Boron 5 1s2 2s22p1 Carbon 6 1s2 2s22p2 Nitrogen 7 1s2 2s22p3 Oxygen 8 1s2 2s22p4 Fluorine 9 1s2 2s22p5 Neon 10 1s2 2s22p6 Period 3 Sodium 11 1s2 2s22p63s1 Magnesium 12 1s2 2s22p63s2 Aluminum 13