Answer: Temperature and number of moles are the conditions which remain constant in Boyle's law.
Explanation:
Boyle's law states that at constant temperature the pressure of a gas is inversely proportional to the volume of gas.
Mathematically, it is represented as follows.
As equation for ideal gas is as follows.
PV = nRT
And, at constant temperature the pressure is inversely proportional to volume which also means that number of moles are also constant in Boyle's law.
Thus, we can conclude that temperature and number of moles are the conditions which remain constant in Boyle's law.
Answer:
−2399.33 kJ
Explanation:
If NH₄NO₃ reacts with fuel oil to give a ΔH of -7198 for every 3 moles of NH₄NO₃
What is the enthalpy change for 1.0 mole of NH₄NO₃ in this reaction
∴ For every 1 mole, we will have
of the total enthaply of the 3 moles
so, to determine the 1 mole; we have:

= −2399.33 kJ
∴ the enthalpy change for 1.0 mole of NH₄NO₃ in this reaction = −2399.33 kJ
I believe the answer is 15kg since after that there is 16kg and before there is 14kg
Answer:
Option D. 53 moles.
Explanation:
The following data were obtained from the question:
Number of mole of C5H10O2 = 5.3 moles
Number of mole of Hydrogen in 5.3 moles of C5H10O2 =?
From the chemical formula of propyl acetate, C5H10O2,
1 mole of C5H10O2 contains 10 moles of H.
Therefore, 5.3 moles of C5H10O2 will contain = 5.3 × 10 = 53 moles of H.
Thus, 5.3 moles of C5H10O2 contains 53 moles of H.
Answer:
C. two atoms of oxygen.
Explanation:
Step 1: Data given
Silicon has 14 electrons
Silicon is part of Group IV, all the elements there have 4 valence electrons.
It can form a compound when 4 valence electrons bind with the 4 valence elctrons of silicon
A. four atoms of calcium.
Calcium has 2 valence elctrons. 4 atoms of calcium <u>cannot bind</u> on 1 atom of silicon since there are only 4 valence electrons.
B. one atom of chlorine.
1 atom of chlorine has 7 valence electrons. Chlorine can bind with an atom with 1 valence electron. Since silicon has 4 valence electrons, they will <u>not bind.</u>
Silicon can bind with 4 atoms of chlorine to form SiCl4
C. two atoms of oxygen.
Oxygen has 6 valence electrons, this means oxygen can bind with an element with 2 valence electrons.
Since silicon has 4 valence electrons, it <u>can bind</u> with 2 atoms of oxygen to form SiO2 (silicon dioxide).
D. three atoms of hydrogen.
Hydrogen has 1 valence electron. 1 hydrogen atom can bind with an element that has 7 valence electrons.
Three atoms of hydrogen can bind with an element that has 5 valence electrons.
Silicon <u>will not</u> bind with 3 atoms of hydrogen ( but can bind with 4 atoms of hydrogen)