The fraction of Earth's radius (6371 km) relative to the thickness of the oceanic (7.5 km) and continental crust (35 km) is 0.12 and 0.55, respectively.
What we know:
- The average radius of Earth (E) = 6371 km
- The average thickness of oceanic crust (O) = 7.5 km
- The average thickness of continental crust (C) = 35 km
We need to convert all the above units from kilometers to miles:

Now, we can calculate the fraction of Earth's radius relative to each type of crust, with the given equation:

- <u>For the oceanic crust (O)</u>:

- <u>For the continental crust (C)</u>:

Therefore, the fraction of Earth's radius relative to the oceanic and continental crust is 0.12 and 0.55, respectively.
You can see another example of calculation of fractions of Earth's radius here: brainly.com/question/4675868?referrer=searchResults
I hope it helps you!
Answer:
It covers changes to the position of equilibrium if you change concentration, pressure or temperature. ... If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium moves to counteract the change
Explanation:
Atomic mass of the parent element =247,
atomic number of the parent element = 95
In the process of β-decay electron leaves the nucleus, so instead of one neutron we get one proton.
Mass of proton≈mass of neutron,
so atomic mass will not change.
Charge of proton =+1, and charge of neutron = 0.
So, we will get atomic number increased by one.
New element (daughter) will have
atomic mass = 247,
and atomic number= 95+1=96
Number 95 - Am (parent),
number 96 - Cm(daughter),
So, from Am-247 we will get Cm-247.
The _____melting point________ is the temperature at which a substance changes from solid to liquid; _______boiling point_________ is the temperature at which a substance changes from a liquid to as gas; _______vapourisation_________ is the process by which atoms of molecules leave a liquid and become a gas.
Answer: The expression for equilibrium constant is ![\frac{[NH_3]^2}{[H_2]^3[N_2]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BH_2%5D%5E3%5BN_2%5D%7D)
Explanation: Equilibrium constant is the expression which relates the concentration of products and reactants preset at equilibrium at constant temperature. It is represented as 
For a general reaction:

The equilibrium constant is written as:
![k_c=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=k_c%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
Chemical reaction for the formation of ammonia is:


Expression for
is:
![k_c=\frac{[NH_3]^2}{[H_2]^3[N_2]}](https://tex.z-dn.net/?f=k_c%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BH_2%5D%5E3%5BN_2%5D%7D)
![1.6\times 10^2=\frac{[NH_3]^2}{[H_2]^3[N_2]}](https://tex.z-dn.net/?f=1.6%5Ctimes%2010%5E2%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BH_2%5D%5E3%5BN_2%5D%7D)