Answer:

Explanation:
Given data:



Let the distance traveled by the object in the second case be 
In the given problem, work done by the forces are same in both the cases.
Thus,





Answer:
On real life example of a scenario that takes advantage of the inverse relationship between force and time when impulse is constant is when making a serve with a lawn tennis racket
How It is an example of impulse is that when a serve is made by moving the bat slowly, the lawn tennis player uses less force and the ball is in contact with the string for longer a period
When however, the lawn tennis player moves the racket faster, with the strings of the racket highly tensioned he uses more force and the ball also spends less time on the racket to produce the same momentum
Explanation:
The impulse of a force, ΔP is given by the following formula;
ΔP = F × Δt
Where ΔP is constant, we have;
F ∝ 1/Δt
Therefore, for the same impulse, when the force is increased, the time of contact is decreases and vice versa.
<span>Which group in the periodic table is known as salt formers?
The correct option is the last one: Halogen family.
</span><span>
You can find the halogen or "</span>salt formers" in the group 17 of the periodic table. These are:
- Fluorine.
-Chlorine.
- Bromine.
- Iodine.
- Astatine.
All of them are non-metallic elements and they have 7 electrons.
A. The formula for mean free time is:
t = V/(4π√2 r²vN)
where
N = 1×10¹⁶ molecules (per m³)
V = 1 m³
r = 111×10⁻⁷m (atomic radius of silicon)
Let's solve for v first:
v = √(3RT/M) = √(3(8.314 m³·Pa/mol·K)(25 + 273 K)/28.1 g/mol Si)
v = 16.26 m/s
t = (1 m³)/(4π√2 (111×10⁻⁷m)²(16.26 m/s)(1×10¹⁶ molecules))
<em>t = 2.81×10⁻9 s</em>
<em>Pure silicon has a high resistivity relative to copper because copper is a conductor, while silicon is a semi-conductor. </em>
Answer:
86.6 lbs
Explanation:
Let the force is X.
Resultant force, R = 100 lbs
Other force is Y. Angle between resultant force and force X is 30°.
According to the diagram


X = 86.6 lbs
Other force Y


Y = 50 lbs