<span>1.0x10^3 Joules
The kinetic energy a body has is expressed as the equation
E = 0.5 M V^2
where
E = Energy
M = Mass
V = Velocity
Since the shot was at rest, the initial energy is 0. Let's calculate the energy that the shot has while in motion
E = 0.5 * 7.2 kg * (17 m/s)^2
E = 3.6 kg * 289 m^2/s^2
E = 1040.4 kg*m^2/s^2
E = 1040.4 J
So the work performed on the shot was 1040.4 Joules. Rounding the result to 2 significant figures gives 1.0x10^3 Joules</span>
<span>553 ohms
The Capacitive reactance of a capacitor is dependent upon the frequency. The lower the frequency, the higher the reactance, the higher the frequency, the lower the reactance. The equation is
Xc = 1/(2*pi*f*C)
where
Xc = Reactance in ohms
pi = 3.1415926535.....
f = frequency in hertz.
C = capacitance in farads.
I'm assuming that the voltage and resistor mentioned in the question are for later parts that are not mentioned in this question. Reason is that they have no effect on the reactance, but would have an effect if a question about current draw is made in a later part. With that said, let's calculate the reactance.
The 120 rad/s frequency is better known as 60 Hz.
Substitute known values into the formula.
Xc = 1/(2*pi* 60 * 0.00000480)
Xc = 1/0.001809557
Xc = 552.6213302
Rounding to 3 significant figures gives 553 ohms.</span>
Momentum is (mass) times (speed), so nothing that is at rest has any momentum. If the battleship is at rest, then a mosquito in flight, a leaf falling from a tree, and your speedy baseball each have more momentum than the ship has.
It depends on what it is closest to but I would say for instance black is 5 points and red is 6 if u land on the line 5.5
The acceleration of the car at impact is 15m/s².
<h3>What is Newton's Second Law of Motion?</h3>
Newton's second law provides a precise explanation of the modifications that a force can make to a body's motion. According to this, a body's momentum changes at a rate that is equal to the force acting on it over time in both magnitude and direction. A body's momentum is equal to the sum of its mass and velocity. Similar to velocity, momentum has both a magnitude and a direction, making it a vector quantity.
acceleration - rate of change of velocity with time, both in terms of speed and direction. A point or object going straight forward is accelerated when it accelerates or decelerates.
There are three types of accelerated motions :
- uniform acceleration,
- non-uniform acceleration
- average acceleration.
express all the units in their most basic form.
kg, newton = kg*m/s², acceleration =m/s²

to learn more about Newton's Second law of Motion - brainly.com/question/13447525
#SPJ4