Answer:
204 m
Explanation:
When the marble is dropped from a certain height, its gravitational potential energy converts into kinetic energy. So the kinetic energy gained is equal to the variation of gravitational potential energy:

where
m is the mass of the marble
g = 9.8 m/s^2 is the acceleration of gravity
is the change in height
In this problem, we have
m = 50 g = 0.05 kg

Solving the formula for
, we find the necessary height from which the marble should be dropped:

Answer:
Explanation:
To get the person Moving you have to overcome the static (means not moving) friction coefficient. U(static)
To get the person going at the same speed you have to overcome the kinetic friction coefficient. U(Kinetic)
Force to get him moving is 198 N. Force = ma = U(static)Mg
combining the 2 equations you get 198N = U(static)* 55kg *9.8m/s^2 Solve for U(static)
Same equation to keep him moving except with the dynamic force and the dynamic U
175N= U(kinetic)*55kg*9.8m/s^2 Solve (U dynamic)
Answer: 3.84dB
Explanation:
Since person A is talking 1.2dB louder than B, we will have
A = 1.2B... (1)
Similarly, person C is talking 3.2 dB louder than person A, we have
C = 3.2A... (2)
From equation 1, B = A/1.2... (3)
To get the ratio of the sound intensity of person C to the sound intensity of person B, we will divide equation 2 by 3 to give
C/B = 3.2A/{A/1.2}
C/B = 3.2A×1.2/A
C/B = 3.2×1.2
C/B = 3.84dB
Answer:
35.7 m
Explanation:
Let


We have to find the distance between Joe's and Karl'e tent.


Substitute the values then we get




Because vertical component of B lie in IV quadrant and y-inIV quadrant is negative.
By triangle addition of vector






Hence, the distance between Joe's and Karl's tent=35.7 m
<u>Answer:</u>
total mass = 410 g
<u>Explanation:</u>
density = 1.8 g/cm³
volume = 200 cm³
density = mass / volume
mass (of liquid) = density x volume
= 1.8 x 200
= 360 g
total mass (beaker + liquid) = 50 + 360 = 410 g [Ans]
Hope this helps!