Answer:
0.14 seconds
Explanation:
The speed of light in vacuum is approximately 3.0*10^8. The distance that would be covered by the object would be equivalent to the circumference of the cross-section of the earth on the equator.
Circumference = 2
*6400000 =4.02*10^7
Time = distance/speed = 4.2*10^7 / 3.0*10^8 =0.14s
I want to say that they will be primarily flat but I honestly don't know
Answer: 6.47m/s
Explanation:
The tangential speed can be defined in terms of linear speed. The linear speed is the distance traveled with respect to time taken. The tangential speed is basically, the linear speed across a circular path.
The time taken for 1 revolution is, 1/3.33 = 0.30s
velocity of the wheel = d/t
Since d is not given, we find d by using formula for the circumference of a circle. 2πr. Thus, V = 2πr/t
V = 2π * 0.309 / 0.3
V = 1.94/0.3
V = 6.47m/s
The tangential speed of the tack is 6.47m/s
Here As we can see the figure that the end of the rope is pulled by some force F
Now as we can see that Piano is connected by a pulley which is passing over the pulley so effectively net force on the piano upwards will be 2F as it is connected by 2 ropes by the pulley
Now for constant velocity of the piano we will say

since velocity is constant so acceleration must be ZERO
so here we have

as we know here that
mg = 1000 N
so we will have


so here force must be 500 N
Answer:
=99.07nm
Explanation:
minimum thickness
2nd = (m - 1/2)λ
d = (m - 1/2)(λ/2n)
refractive index of the thin film, n = 1.34
minimum thickness m = 1
light wavelength λ = 531nm
d = (1 - 1/2) (531 / (2)(1.34)
d = 531/5.36
= 99.07nm