Q = mct
-Q= energy in Joules
-m = mass in grams
-c= specific heat capacity in J/g degree C
-t = delta temperature in degrees Celsius
So,
Q = m c t
Q = (7 grams)(0.448J/g C)(750 C - 25 C)
Q = 2273.6 J
Your final answer = 2273.6 Joules
Answer:
Here malonic acid acts as a competitive inhibitor of succinate dehydrogenase
Explanation:
Malonic acid structurally resembles succinic acid as a result the enzyme succinate dehydrogenase cannot distinguish between malonic acid and succinic acid.
That"s why malonic acid interact with succinate dehydrogenase thereby blocking the catalytic activity of the later.
As this mechanism is a type of competitive inhibition that"s why increasing the concentration of substrate succinic acid can reduce the inhibitory effect of malonic acid.

The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to an atom or molecule making a transition from a high energy state to a lower energy state. The photon energy of the emitted photon is equal to the energy difference between the two states. There are many possible electron transitions for each atom, and each transition has a specific energy difference. This collection of different transitions, leading to different radiated wavelengths, make up an emission spectrum. Each element's emission spectrum is unique. Therefore, spectroscopy can be used to identify elements in matter of unknown composition. Similarly, the emission spectra of molecules can be used in chemical analysis of substances.
Answer:
The answer to your question is 21.45 g of KBr
Explanation:
Chemical reaction
2K + Br₂ ⇒ 2KBr
14.4 ?
Process
1.- Calculate the molecular mass of bromine and potassium bromide
Bromine = 2 x 79.9 = 159.8g
Potassium bromide = 2(79.9 + 39.1) = 238 g
2.- Solve it using proportions
159.8 g of Bromine ------------ 238 g of potassium bromide
14.4 g of Bromine ------------ x
x = (14.4 x 238) / 159.8
x = 3427.2 / 159.8
x = 21.45g of KBr