<h2><u>Answer:</u></h2>
The correct answer is A) 1.04 mol Cu
{65.8 g / 63.55 g/mol}
= 1.04 mol Cu
Explanation:
In 63.55 g of copper metal there are 1 m
o
l of C
u atoms. By dividing the mass of Cu and molar mass, we can easily get the number of moles.
Taking into account the definition of density, assuming all other conditions remain the same, increasing mass will cause an object's density to increase.
Density is defined as the property that matter, whether solid, liquid or gas, has to compress into a given space. That is, density is a quantity referred to the amount of mass contained in a given volume.
Density is an intensive property since it does not vary with the amount of substance.
Since density is the relationship between the mass and the volume of a substance, its calculation is defined as the quotient between the mass of a body and the volume it occupies:

In the previous expression it can be observed that the density is inversely proportional to the volume: the smaller the volume occupied by a certain mass, the greater the density.
On the other hand, density is directly proportional to mass: the greater the mass, the greater the density.
Finally, assuming all other conditions remain the same, increasing mass will cause an object's density to increase.
Learn more about density:
Answer:
metals can be magnetic.
Explanation:
certain types of metals are magnetic.
Answer & Explanation:
In physics, a contact force is a force that acts at the point of contact between two objects, in contrast to body forces. Contact forces are described by Newton's laws of motion, as with all other forces in dynamics. Contact force is the force in which an object comes in contact with another object. Contact forces are also direct forces. Contact forces are ubiquitous and are responsible for most visible interactions between macroscopic collections of matter. Pushing a car up a hill or kicking a ball or pushing a desk across a room are some of the everyday examples where contact forces are at work. In the first case the force is continuously applied by the person on the car, while in the second case the force is delivered in a short impulse.
It has to be A or B bc c and d are just dumb answers