Transformer contains two coils: primary and secondary. They allow change of voltage to lower or higher value. In first case we have step-down and in second case we have step-up transformer.
Formula used for transformer is:

Where:N1 = number of turns on primary coilN2 = number of turns on secondary coilV1 = voltage on primary coilV2 = voltage on secondary coil
In a step-down transformer primary coil has more turns than secondary coil. So the ratio 1:38 means that for each turn on secondary coil we have 38 turns on primary coil.
We can solve the equation for V2:

Secondary coil provides voltage of 3.16V.
Answer:
43.2
because to convert from m/sec to kmph we need to multiply by 3600/1000
Answer:
B. +m
Explanation:
The magnification of an image is defined as the ratio between the size of the image and of the object:

where we have
y' = size of the image
y = size of the object
There are two possible situations:
- When m is positive, y' has same sign as y: this means that the image image is upright
- When m is negative, y' has opposite sign to y: this means that the image is upside down
Therefore, the correct option representing an upright image is
B. +m
<span>let the fsh jump with initial velocity (u) in direction (angle p) with horizontal
it can cross and reach top of trajectory if its top height h = 1.5m
and horizontal distance d = (1/2) Range
--------------------------------------...
let t be top height time
at top height, vertical component of its velocity =0
vy = 0 = u sin p - gt
t = u sin p/g
h = [u sin p]*t - 0.5 g[t[^2
1.5 = u^2 sin^2 p/g - u^2 sin^2 p/2g
u^2 sin^2 p/2g = 1.5
u^2 sin^2 p = 1.5*2*9.8 = 29.4
u sin p = 5.42 m/s >>>>>>>>>>>>>>> V-component
=====================
t = HALF the time of flight
d = (1/2) Range (R) = (1/2) [2 u^2 sin p cos p/g]
1 = u^2 sin p cos p/g
u sin p * u cos p = 9.8
5.42 * u cos p = 9.8
u cos p = 1.81 m/s >>>>>>>>>>>>> H-component
check>>
u = sqrt[u^2 cos^2 p + u^2 sin^2 p] = 5.71 m/s
u < less than fish's potential jump speed 6.26 m/s
so it will able to cross</span>
D) waves are used to transmit the rail signal though the air. these waves are encoded at different frequencies for different stations